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Initial state randomness improves sequence learning in a model hippocampal network

A. P. Shon,* X. B. Wu,† D. W. Sullivan,‡ and W. B Levy§

Department of Neurological Surgery, University of Virginia, P.O. Box 800420, Charlottesville, Virginia 22908-0420
~Received 27 March 2001; published 6 March 2002!

Randomness can be a useful component of computation. Using a computationally minimal, but still biologi-
cally based model of the hippocampus, we evaluate the effects of initial state randomization on learning a
cognitive problem that requires this brain structure. Greater randomness of initial states leads to more robust
performance in simulations of the cognitive task called transverse patterning, a context-dependent discrimina-
tion task that we code as a sequence prediction problem. At the conclusion of training, greater initial random-
ness during training trials also correlates with increased, repetitive firing of select individual neurons, previ-
ously named local context neurons. In essence, such repetitively firing neurons recognize subsequences, and
previously their presence has been correlated with solving the transverse patterning problem. A more detailed
analysis of the simulations across training trials reveals more about initial state randomization. The beneficial
effects of initial state randomization derive from enhanced variation, across training trials, of the sequential
states of a network. This greater variation is not uniformly present during training; it is largely restricted to the
beginning of training and when novel sequences are introduced. Little such variation occurs after extensive or
even moderate amounts of training. We explain why variation is high early in training, but not later. This
automatic modulation of the initial-state-driven random variation through state space is reminiscent of simu-
lated annealing where modulated randomization encourages a selectively broad search through state space. In
contrast to an annealing schedule, the selective occurrence of such a random search here is an emergent
property, and the critical randomization occurs during training rather than testing.

DOI: 10.1103/PhysRevE.65.031914 PACS number~s!: 87.18.Sn, 87.19.La, 05.40.Ca
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I. INTRODUCTION

Random fluctuations are generally an undesirable fea
of information processing systems including sequence le
ing neural networks~e.g., @1#!. Investigations of both bio-
logical and artificial neural systems have, however, sho
that such fluctuations can improve performance@2,3,4,5#.

Using our hippocampal model@5#, we have previously
shown that random fluctuations are important for rob
learning and that the model is sensitive to initial conditio
By quantifying this sensitivity in a recurrent, sequenc
learning neural network model and by correlating it w
learned performance, we have made three, related obs
tions about the role of randomization in learning the cog
tive task called transitive inference~TI!. First, this model is
sensitive to randomization of the network state produced
an external influence even when randomization is limited
time step zero of each trial. Second, the model is most s
sitive to this randomization when the probability of neuron
firing on time step zero equals the nominal, preset activ
level implicit in the parametrization of these randomly co
nected networks. Third, a strong positive correlation ex
between the model’s success in learning TI and the ef
that time step zero randomization has on the next netw
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state. For example, the best performance on this cogn
task occurs when randomization at time zero is chosen s
to produce the greatest randomizing effect on a future s
of the network.

Here we extend these results in three ways to gain gre
insight into the mechanisms by which initial state rando
ization controls randomization of later states of the netw
simulations. In contrast to the previous study@5#, where the
number of neurons firing in the initial vectorZ(0) was var-
ied, here we investigate the effect of randomly varying t
firing neurons for a specified fraction of eachZ(0) vector,
while the total number of neurons is kept fixed.~For ex-
ample, suppose there are 1000 neurons and total activi
set to 90 particular neurons out of these 1000; then if
specified randomization is 50%, 45 out of these 90 will
randomly exchanged with the other 910 neurons.! In collo-
quial terms, the random variation ofZ(0) from trial to trial
corresponds to beginning each training trial with a differe
state of mind.

A second difference from our previous study is the use
a different cognitive task, transverse patterning~TP!. Both
the TI studied previously and TP studied here require nor
hippocampal function@6,7# if they are to be learned.~Thus a
good network model of the hippocampus@8,9# should be
able to learn both tasks.! Interestingly, TI and TP are comple
mentary cognitive tasks in the sense that TI is a cont
dependent, linear inferential task and TP is a context dep
dent, nonlinear inferential task. In particular, success at
requires learning when each of three symbols is correct a
the following situations: whenA andB are concurrent,A is
correct; whenB andC are concurrent, thenB is correct; and
whenA andC are concurrent, thenC is the right answer~as
in the playground game rock-paper-scissors!.
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A third difference is the substantial extension of our u
derstanding of the mechanisms through which initial st
randomization works. By performing systematic measu
ments of network states as functions of initial state rando
izations, we are able to develop and define the hypothes
a randomly driven state space search during early phase
learning.

Because this model is not derived from the typical rec
rent neural model used by physicists@10# ~although it is re-
lated to many of these models!, an overview of the mode
seems appropriate. This overview consists of the cognit
biological, and computational concerns that motivated t
network.

Based on hypothesized hippocampal computational fu
tions that explain generalized hippocampal function in
havioral and cognitive contexts@8,9#, the model performs
sequence learning while at the same time functions as a
dom recoder. From these two basic characteristics arise
ability to solve problems, whose solutions are only possi
by use of contextual information~e.g., Refs.@9,11#!. The idea
that the hippocampus is a sequence learning/predicting
vice is controversial. While several research groups seem
agree@12,13,14,15,16#, there are other opinions~e.g., Refs.
@17,18#!.

In terms of specifics, the model uses McCulloch-P
neurons modified for divisive inhibition. The connectivity o
the model is recurrent, sparse, excitatory, and random ex
for feedback and feedforward inhibition that are global. Ne
rons driven by external inputs are incorporated without d
tinction into the recurrent network. That is, externally ac
vated neurons are also randomly embedded into
network’s sparse, recurrent connectivity.

Associative synaptic modification is an autonomous pr
erty of each excitatory synapse. The synaptic modificat
rule is local, asymmetrically time spanning with both pote
tiation and depression possible@19,13,20,21#.

Finally, the overall model performance is not based
any asymptotic theory. Although isolated synapses~i,j! will
tend to take on a strength proportional to the conditio
meanE @presynaptic inputi at (t21)upostsynaptic neuronj
fires att#, the entire network cannot be seen as convergin
some asymptotic limit. At the end of training, there are tra
sient attractors, but rarely are there stable points in s
space after training on the transverse patterning problem.
though somewhat disappointing from a theoretical vie
point, the model reproduces the learning rates seen in be
ing animals~see Ref.@22# for one such comparison!, which
is really the final arbiter of the model’s success or failure

In this study, we manipulate only one of the two sourc
of randomness that exist in our minimal model of hippoca
pal CA3. One source of randomness, which makes e
simulation different, is the randomly determined initial co
nectivity of each simulation. The second source of rando
ness, and the object of manipulation and study here, is
composition of the set of neurons that fire just before e
training and test trial. This set is specified by the vec
Z(0).

Defining randomness in terms of how many neurons
perturbed and how many are kept constant~see Sec. II for
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details!, the results of the computational simulations demo
strate a strong positive correlation betweenZ(0) randomness
and probability of learning TP~Fig. 1!. The results also dem
onstrate a strong positive correlation betweenZ(0) random-
ness and the average firing periods of specific sets of n
rons, calledlocal context neurons. These neurons fire only on
specific and contiguous time steps of a particular seque
and thus are subsequence detectors, and are analogou
the hippocampal place cells@23#. Local context neurons
were previously shown@22# to play an important role when
simulations of the model solve the transverse pattern
problem. This, and additional results, reveal thatZ(0) ran-
domization drives a searchlike process to produce more
bust learning.

Finally, our studies of neuronal excitation distribution
and an accompanying theorem provide a firmer basis for
derstanding how initial state variations help the model
velop robust internal codes to solve problems.

II. METHODS

A. Network architecture

Our computationally minimal model@Fig. 2~a!# of the
hippocampus consists of a sparsely connected~10%! recur-
rent network of McCulloch-Pitts neurons@9#. External inputs
represent signals to CA3 from the entorhinal cortex and
dentate gyrus. However, most of the excitation is recurre

In this model, a neuron’s internal excitation on time stet
of a trial is the sum of the weights of its recurrent inputs th
were active on time step (t21). This excitation is divided by
a term representing shunting inhibition to obtain a value

FIG. 1. Randomness ofZ~0! facilitates learning of TP. Perfor-
mance begins improving once approximately 50% of theZ~0! neu-
rons are randomized from trial to trial. The fraction of the simu
tions that successfully learned TP~see Sec. II C! is plotted as a
function of the number of randomly chosen neurons in eachZ~0!
state of a simulation. See Sec. II E and the Introduction for
definition of randomness and an example of a randomization. Th
different simulations~each with different random connections b
tween its neurons! were trained and tested at each level ofZ~0!
randomness. Inhibition constants were selected to achieve app
mately 10% activity. EachZ~0! vector contained 102 active neu
rons. All Z~0! vectors were sets of neurons orthogonal to the se
external inputs. Simulation parameters:N51024, me532, e
50.05,KI50.048,KR50.048,K050, w50.4, andc50.1.
4-2
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FIG. 2. The basic hippocampal model.~a! The external input toCA3 is sparse and excitatory, representing a combination of the in
from entorhinal cortex~EC! and dentate gyrus~DG!. The strongest input to the network is its own recurrent excitation. Both the externa
recurrent inputs are accompanied by proportional activation of inhibitory neurons~I!. The output of the network is the firing vector of th
CA3 neurons themselves.~b! Schematic depiction of the sparse nature of the recurrent excitatory synapses of theCA3 neurons. Key:CA3
pyramidal neurons~D!, recurrent excitatory synapses on these neurons~d!.
c

y

th

-
a

a
ir

ut

T

ec
iv
hi
a

-

er-

n:
d
tion
ro
of

tic
en

bi-

ing
ding
ion

a-
ca-
e
ing

tic
ng
ot
ptic
yn-

yn-
the

ap-
di-
the interval@0, 1# @24#. Formally, the internal excitationyj (t)
of neuronj on time stept is

yj~ t !5

(
i 51

N

wi j ci j zi~ t21!

(
i 51

N

wi j ci j zi~ t21!1KRm~ t21!1K01KI (
i 51

N

xi~ t !

,

~1!

whereN is the total number of neurons. A synaptic conne
tion from neuroni to neuronj is represented byci j ~1 if a
connection is present, 0 if no connection is present!. The
weight of the synapse from neuroni to neuronj is repre-
sented bywi j . The variablezi(t21) represents the binar
@zi(t)P$0,1%# firing of recurrent neuroni on time step (t
21). The binary variablexi(t) represents the firing of an
external input to neuroni on time stept. The variablem(t
21) represents the number of neurons in the network
fired on time step (t21). The denominator of Eq.~1! con-
tains three inhibitory parameters:KI scales feedforward in
hibition of external inputs;KR scales feedback inhibition as
function of recurrent neuronal firing; andK0 represents a
resting conductance. These three inhibitory parameters
set such that activity levels are maintained around a des
value. We use the method described in Ref.@24# to determine
the best values for these inhibitory parameters.

After calculating each neuron’s internal excitation, an o
put firing decision occurs—either a 0 or a 1,representing the
absence or presence of an action potential respectively.
firing functionzj is determined on time stept by the equation

zj~ t !5H 1 if yj~ t !>0.5 or if xj~ t !51,

0 otherwise
. ~2!

At the beginning of each simulation, the neuronal conn
tions are specified randomly, such that each neuron rece
the same number of recurrent synaptic connections. W
the number of connections made by each neuron varies
follows a binomial distribution around the mean valueNc
~whereN is the number of neurons andc is percent connec
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tivity !. Herec was always 10%; thus our model is charact
ized by sparse connectivity@Fig. 2~b!#.

Two types of trials may take place during a simulatio
training and test. During training, a network is presente
with a prespecified input sequence and synaptic modifica
is allowed to occur. A training trial begins at time step ze
with synaptic modification inactivated, and the firing state
the network specified by the vectorZ(0). Then follows the
presentation of the training input sequence, with synap
modification allowed throughout the sequence. Betwe
training trials, the network autonomously adjusts its inhi
tory parameters~KR , KI , and K0! to keep activity levels
relatively stable~for details, see Ref.@25#!. A test trial also
begins with an initial firing state specified byZ(0). During a
test trial, the network is presented with a part of the train
sequence and is expected to produce an output correspon
to one of three possible answers. No synaptic modificat
takes place within a test trial.

B. The synaptic modification rule

This model learns via locally driven synaptic modific
tion, using a time-dependent associative synaptic modifi
tion rule @8,26#. On each time step of each training trial, th
weight of every synapse in the network is updated accord
to the equation

wi j ~ t11!5wi j ~ t !1zj~ t !«@zi~ t21!2wi j ~ t !#, ~3!

where« is a small positive constant, typically 0.05. Synap
modification in this model depends completely on the firi
of postsynaptic neuronj: if the postsynaptic neuron does n
fire, the synaptic weight does not change. If the postsyna
neuron fires on the time step immediately after the pres
aptic neuron fires, then the connectionwi j is strengthened.
Conversely, if the postsynaptic neuron fires when the pres
aptic neuron has not fired on the previous time step, then
synaptic weight decreases. After many training trials, syn
tic modification produces synaptic weights that are con
tional probabilities asE@Zi(t21)uZj (t)51# @27#.
4-3
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C. The transverse patterning problem

The TP task@28# requires a choice from among thre
stimuli, A,B,C, which are presented to the network as sim
taneous pairs~AB,BC, or CA!. We refer to trials for each o
these three stimulus pairs as asubtask. Figure 3 illustrates
the firing of external neurons used in training to define
two possible versions~i.e., right and wrong! of the AB sub-
task.

In TP experiments, the experimenter trains the sub
~human, animal, or a simulated neural network! to choose the
correct stimulus in each pair. First, a stimulus pair is p
sented to the subject, then the subject chooses one stim
in that pair, and then the subject is told whether its decis
was correct or incorrect. This training cycle occurs repe
edly. The stimulus pairings are circular with respect to
correct decision: the stimulusA is correct whenAB co-
occurs, the stimulusB is correct whenBC co-occurs, and the
stimulusC is correct whenCA co-occurs. As a result of the
symmetry of right and wrong, the correct decision can o
be made using the contextual knowledge of the stimulus
itself.

To train a network on TP, we create six training s
quences, two for each subtask~e.g., Fig. 3! corresponding to
the correct and incorrect decisions. Each training seque
consists of three orthogonal~nonoverlapping! patterns of ex-
ternally fired neurons. The first pattern~AB, BC, or CA! rep-
resents a stimulus pair, the second pattern a ‘‘decision’’~a,b,
or c! represents the choice between the two stimuli, and
third pattern ~1 or 2! represents the outcome~right or
wrong! of the decision. Each pattern is presented for th
consecutive time steps. We use this presentation method
cause it enhances performance on the transverse patte
problem @22# and because stimuli are not instantaneo
events. Figure 3 illustrates the configuration of external
puts during training for theAB subtask. The six training se
quences for TP are:

Here we employed a progressive training paradigm,
has been used in behavioral experiments~@6,29# see Ref.@30#
for a computationally based comparison of different train
methods that reflect the animal and human literature!. In this
paradigm, training occurs in blocks of trials for each subta
Within a block, training trials are mixed between the tw
training sequences~1 and 2! for the subtask. This mixing
between the two training sequences is pseudorandom a
constant across simulations. The progressive training p
digm begins with four blocks of 30 training trials consistin
of only theAB subtask. Blocks of 20 training trials on theBC
subtask are then interspersed with additional blocks of
training trials on theAB subtask. Blocks of five trials on th
CA subtask are then introduced, intermixed with blocks

Subtask
Sequence w/correct

decision
Sequence w/incorrect

decision

AB (AB)(AB)(AB)aaa111 (AB)(AB)(AB)bbb222

BC (BC)(BC)(BC)bbb111 (BC)(BC)(BC)ccc222

CA (CA)(CA)(CA)ccc111 (CA)(CA)(CA)aaa222
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FIG. 3. Firing diagrams for a TP subtask. The left firing di
gram, (AB)a1, shows an input sequence for anAB training trial
with a correct decision, a, and its positive outcome,1. The firing
diagram to the right,ABb2, shows the external input for an inco
rect trial where the,b, decision is made and its negative result
signaled,2. Note the orthogonal nature of the external inpu
stimulus A, neurons 1–16; stimulusB, neurons 17–32; decision
pattern a, neurons 49–80; decision patternb, neurons 81–112; out-
come for the correct response—neurons 145–176; outcome fo
incorrect response—neurons 177–208. Because the network is
domly connected, the spatial juxtaposition of two neurons in t
schematic is irrelevant to network performance and is used so
for explanatory convenience. Only 210 of the 1024 neurons
shown.
4-4
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FIG. 4. Training is necessary
for strong, reliable correct deci
sion patterns. Illustrated here ar
firing patterns for test trials given
before and after training. The firs
three firing diagrams are of tes
trials before training, to stimulus
pairs AB, BC, and CA, respec-
tively. Note that the firing patterns
of decision neurons~indicated by
a, b, and c! are seemingly more
random prior to training. How-
ever, after training, externally de
fined decision firing patternsa, b,
or c are clearly produced by the
network when tested onAB, BC,
or CA, respectively.
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five training trials on theAB and BC subtasks. In the las
phase of training, trials of all three subtasks are fully int
mixed. Each simulation of TP consisted of 300 training tria

The proportion of training trials consisting of a stimulu
pair ~e.g., AB! and the correct decision pattern with its a
companying positive outcome pattern~i.e., a, 1 in this ex-
ample! as opposed to the incorrect decision pattern and
negative outcome pattern, varied as training progressed.
cifically, the proportion of correct responses increased o
training exactly at the rate reported by Alvarado and Ru
@6#.

Following each learning trial, we assessed learning us
the method of induced attractors~see Ref.@31# !. Each test
trial was nine time steps long, plus the starting stateZ(0),
with a stimulus pair presented on time steps one, two,
three, and ten neurons from the positive outcome pat
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active throughout. We decode the network’s decision ba
on the recurrently induced firing of the external neurons t
define the two possible decision patterns for each partic
stimulus pair. For example, Fig. 4 illustrates testing befo
and after training for each of the three subtasks. Before tr
ing, the simulations produce highly variable firing patterns
the decision neurons. After training, however, there is a cl
strong, and relatively stable firing of neurons that repres
the correct decision, and this is true for each subtask.

To quantify this decision, we determine the average nu
ber of neurons in each decision pattern that fired during
last three time steps of the test trial. If more neurons belo
ing to the correct externally defined decision pattern~e.g.,
the decision ‘‘a’’ when AB is the stimulus pair! fired than
neurons belonging to the incorrect decision pattern, then
network made the correct decision on the subtask tested,
4-5
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the test trial is scored as a 1. If more neurons belonging
the incorrect decision pattern~e.g., ‘‘b’’ when AB is the
stimulus pair! fired than in the correct decision pattern, th
an incorrect decision has been made, and the trial is score
a 0. If an equal number of neurons belonging to both de
sion patterns fired, the trial is scored as 0.5. Typical succ
ful test trials, characterized by higher activity of the neuro
representing the correct decision pattern, are shown fo
three subtasks in Fig. 4.

Success in test trials~which are interleaved with the fina
30 training trials! is used to quantify learned performanc
As defined by Alvarado and Rudy@6#, a simulation learned
TP only if it generated the correct decision at least 85%
the time on all three subtasks during these final 30 test tr
~using alternative definitions we have determined that
threshold criterion does not introduce artificial trends into
results!.

D. Local context neurons

We previously@1# described the formation of transient
self-exciting assemblies of neurons~see also Ref.@8#, Fig. 11
and 12!. Such assemblies are characterized by neurons
fire repetitively in response to a specific set of tempora
contiguous patterns in a sequence. A repetitively firing n
ron is called alocal context neuronbecause it locates, in
time, a subsequence that provides contextual informat
For example, if a neuron fires only on time steps 3, 4, an
of a given sequence, it is a local context neuron of lengt
for that sequence. A neuron that fires on multiple, nonc
tiguous time steps is not a local context neuron, but s
neurons are extremely rare at the end of training.

Figure 5, particularly the recurrently activated neurons
the right half of the figure, illustrates the local context ne
rons formed during a TP simulation. Early in training, ne
rons 211–420, which are not directly activated by exter
inputs, fire only in a sparse, scattered manner. In contr
after training, if one of these neurons fires, it tends to fire
several contiguous time steps. The formation of local con
neurons is important for a simulation to succeed at TP@22#.

To examine how randomness inZ(0) affects formation of
local context neurons during TP simulations, we determin
average local context length for each simulation and av
aged those values over all 30 simulations for each degre
fractional randomness tested.

E. Varying randomness in Z„0…

The initial state vector,Z(0), specifies the binary firing
statesZiP$0,1% of each neuron at time step zero of ea
training and test sequence. In contrast to Wu and Levy@5#,
where the positively valued neurons were fully randomiz
and their Hamming length systematically varied, hereZ(0)
is constrained to a fixed length that corresponds to the o
mal length implied by the earlier study. Moreover, only
fraction of this length~from 0 to 100%! is randomized in a
set of simulations. The number of randomly firing neuro
divided by the total number of firing neurons defines t
fractional randomness of aZ(0). That is, for one full simu-
lation of TP training and testing, the binary state vectorZ(0)
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has a fixed, specified fractional randomness, and from tria
trial, eachZ(0) consists of a fixed, nonrandom positive
valued subspace of the$0,1%N state space accompanied b
neurons that are varied randomly over the remaining s
space from trial to trial~except when fractional randomnes
is zero!. To create aZ(0) with a particular fractional ran-
domness, we construct two preliminary subvectors. The
subvector represents the group of neurons thatmustfire as
part of all Z(0) vectors on all training and test sequences
the simulation. Neurons coding input patterns are exclu

FIG. 5. Context neurons develop with training. Notice the fr
quent sequential firing of the recurrent neurons~211–420! occur-
ring late in training compared to early in training. This repetiti
firing stands in contrast to the sparse, somewhat random firing
hibited in early training. The two leftmost diagrams show firing
mostly externally driven neurons, and here only a few neurons
recurrently driven to fire. The example here is for anAba1 train-
ing sequence. The external~i.e., input! codes are: stimulusA, neu-
rons 1–16; stimulusB, neurons 17–32; decision pattern a, neuro
49–80; outcome for the correct response—neurons 145–176.
cause the network is randomly connected, the spatial juxtapos
of two neurons in this schematic is irrelevant to network perf
mance and is used solely for explanatory convenience. Only 42
the 1024 neurons are shown.
4-6
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INITIAL STATE RANDOMNESS IMPROVES SEQUENCE . . . PHYSICAL REVIEW E 65 031914
from this first subvector. The second subvector consists
the neurons thatmayfire in all Z(0) vectors. For each trial
neuronal firing in the second subvector is uniformly rand
given the required number that must fire.

This method of constructingZ(0) according to fractiona
randomness provides an approximate control of trial-to-t
Z(0) variation. The average normalized Hamming distan
between successiveZ(0)’s during training is a function of
the fractional randomness used inZ(0) construction. This
function and its derivation can be found in Appendix B.

To map the relationship between TP performance
fractional randomness used in training, thirty TP simulatio
are averaged for each of 100 different levels of fractio
randomness ranging from 0 to 1.

F. Measuring the effects of Z„0… randomness on firing
patterns

To quantify the model’s sensitivity toZ(0) randomiza-
tions, the distance in state space between the tempo
matched firing states for a pair of simulations is measu
using Hamming distance. To generalize across simulat
using different activity levels, we normalize Hamming di
tance by activity. Thus, wheredH is Hamming distance,dnH
is normalized Hamming distance,Z(t) and Z8(t) are firing
vectors from a paired simulation, andm(t) is the number of
neurons that are active on time stept:

dnH@Z~ t !,Z8~ t !#5
dH@Z~ t !,Z8~ t !#

2m~ t !
.

G. Dynamic modulation of inhibition

We ran simulations with and without dynamic modulati
of inhibition @25#. When modulated inhibition is used, th
values ofKR , KI , andK0 are adjusted from trial to trial to
maintain, in an approximate sense, a desired activity le
Simulations run without dynamic modulation of inhibitio
can exhibit significant fluctuations in activity from trial t
trial. Even so, all results described below are robust with
regard to modulated inhibition.

III. SIMULATION RESULTS

A. Randomness in initial firing patterns assists performance in
cognitive tasks

Simulations show a positive role forZ(0) randomness in
learning TP. The amount of trial-to-trial variability ofZ(0)
~fractional randomness! is monotonically related to perfor
mance, and the best performance is achieved whenZ(0) is
fully randomized~fractional randomness51! for each trial
~Fig. 1!.

Another baseline control is the use of no active neuron
Z(0) as opposed to the fixed, nonfluctuating neurons ofZ(0)
with fractional randomness of zero, as illustrated in Fig.
When Z(0) randomness is zero, only 57.5%~23/40! of the
simulations are successful compared to 81.5%~636/780,
standard deviation57.1%! of simulations with full ~75–
100%! randomization. Thus, regardless of the controls~see
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also, Refs.@5,24#!, initial state randomization helps learnin

B. Randomness does not disrupt learning

Before training, arbitrary external inputs strongly influ
ence recurrent firing. This is demonstrated in Fig. 6. That
external inputs influence the path that the firing sequenc
the network can follow through the$0,1%N state space. When
a single network is twice presented with a simple sequen
the normalized Hamming distance between the two
quences reaches an asymptote at approximately 0.6, reg
less of the difference inZ(0)’s. Thus,Z(0) effects partially
dissipate over the course of a single trial. But as a test t
includes fewer time steps of strong external activation,
still need to determine why largeZ(0) randomization does
not disrupt testing.

As it turns out, there is less and less sensitivity to var
tion of Z(0) as training progresses. In psychological term
the learned responses to the input sequence become inc
ingly reliable as training progresses. This reduced sensiti
to initial firing state variation is most simply demonstrat
by repeatedly training on one input sequence. Conside
simulation consisting of training on the same nine time s
sequence for 125 trials. After each training trial, the simu
tion is tested twice on the training sequence using two
thogonalZ(0)s. Thenine firing states of each pair of tes
trials were compared, matching time step for time step,

FIG. 6. Before training, external inputs limit recurrent firing
an asymptotic level of randomness although how a simula
reaches this level depends on the amount ofZ~0! randomization. As
must be the case, 0% perturbation, whereZ~0! andZ8(0) are iden-
tical, produces no difference in future network state, because
work computations are deterministic. However, just perturbing
single neuron at time step zero is enough to produce asymp
randomness in just a few cycles. For each curve, a single netw
~with no synaptic modification! was presented twice with the sam
input sequence; each presentation started with a different in
state@Z~0! or Z8(0)# but was then followed by the identical exte
nal sequence on successive time steps. For each curve, the s
theZ~0! vs Z(0)8 randomization corresponds to the point plotted
time zero. Each curve plots the normalized Hamming distance
tween the two firing sequences over nine time steps. Simulat
were parametrized as:N51024, me532, e50, KI50.02, KR

50.047 626 8,K050.777 933,w50.4, c50.1. Key: 0% perturba-
tion ~j!, 1% perturbation~m!, 25% perturbation~d!, 50% pertur-
bation ~h!, 75% perturbation~n!, 100% perturbation~¹!.
4-7
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averaged. The average normalized Hamming distance
0.86 before training, and dropped to 0.19 by training tr
number 15; Fig. 7~a! details the comparison for all trainin
trials. Note the largeZ(0) randomness effect occurring at th
beginning of training gives way to a smaller effect as train
progresses, and it does so rather quickly. As a result of
growing insensitivity toZ(0), randomization is no longe
disruptive after sufficient training. However, this observati
must be further considered in light of the progressive train
paradigm, which successively introduces new sequences
ing training.

FIG. 7. ~a! Sensitivity toZ~0! randomization declines rapidly a
training progresses, but it remains nonzero even after 125 trial
only 15 training trials, perturbation of firing sequences due toZ~0!
randomization arrives at its approximate minimal value.~b! Intro-
ducing a new input sequence during training temporarily increa
sensitivity to random perturbation of the initial firing state. The n
sequence is fully orthogonal to the first sequence introduced
training trial 39. Both parts use the same general methods. Two
trials accompany each training trial. Normalized Hamming d
tances quantify each time step of these two tests. Plotted her
the average of the nine Hamming distances for each pair of
trials. The training sequence was nine time steps long, and the s
firing externals shifted by eight neurons on each time step. A
ferent Z~0! was used for each presentation such t
dnH@Z(0),Z8(0)#51. Simulation parameters:N51024, K0

50.510 365,KR50.048 109,KI50.02, me516, all other param-
eters are the same as in Fig. 1.
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C. A novel training sequence increases sensitivity
to Z„0… randomization

Although sensitivity to Z(0) randomization decrease
across training on a single sequence, introducing a no
external input sequence during training transiently rever
this trend. Figure 7~b! illustrates the early, quick, decrease
sensitivity toZ(0) randomization, but more importantly,
illustrates a reversal of this decrease triggered by the in
duction of a novel sequence. When the new sequence is
introduced at trial 40, the average normalized Hamming d
tance between state vectors immediately jumps from 0.1
0.56. But just as before, this increased distance drops
quickly ~;15 training trials!, reaching roughly the same as
ymptotically low level of sensitivity as when trained on th
initial sequence. Apparently, the novel input sequence pus
the network into a new region of state space, forcing it to u
neurons whose synapses have not yet been modified.

D. Z„0… Randomization affects formation of
local context neurons

Greater average local context length has been correl
with better performance@1,22#. Here we can study this cor
relation in a much more direct fashion. By varyingZ(0) as
in Fig. 1, we vary average context length as well as perf
mance. In fact, the two measures vary in the same hig
nonlinear way as a function of randomization. Compari
Fig. 1 and Fig. 8, we see a striking similarity to the relatio
ship between randomness and performance on the trans
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n
st

-
are
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f-
t

FIG. 8. Randomness ofZ~0! leads to the formation of longe
local-context units. Note that the curve shown here is qualitativ
similar to the curve in Fig. 1: specifically once fractional rando
ness ofZ~0! is greater than 50%, mean context length increa
dramatically and an asymptote is reached at about 77% random
Plotted here is the mean of the context neuron distribution afte
300 training trials, averaged over all 30 simulations used in
Because data from each training sequence produced quantitat
similar results, we only show context lengths for the one train
sequence, (AB)(AB)(AB)(a)(a)(a)(1)(1)(1). The simulation
parameters were the same as for Fig. 1.~See Sec. II E for the defi-
nition of local-context neurons.!
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INITIAL STATE RANDOMNESS IMPROVES SEQUENCE . . . PHYSICAL REVIEW E 65 031914
patterning problem. Both context length and success rate
dergo a dramatic jump between fractional randomness
and 0.75, and level off after fractional randomness 0.
Thus, there is a strong linear correlation when the two
pendent variables are regressed against each other. The
regression of average context length vs TP performa
gives r 250.95 with a slope of 1.214 andy intercept
5 2 1.919.

IV. MODEL DYNAMICS IN RANDOM SEARCH

At the heart of our hippocampal theory is sequence lea
ing as recoding@8#. It is natural to use terms such as recodi
or encoding because after training, there is a reliable m
ping from a particular set of active external input neurons
a particular set of recurrently activated neurons. Not surp
ingly, the codes are highly dependent on the external in
sequences presented during training~see Ref.@22#!. Under-
standing how a simulation learns good codes requires
analysis of how the simulation moves through state sp
during training. Here we begin the development of a qua
tative prediction of howZ(0) affects the state space path
an untrained network.

In Sec. IV A, we discuss effects ofZ(0) randomization on
the excitation of neurons relative to threshold. Based u
the ideas outlined in Sec. IV A, Sec. IV B details a quanti
tive theory of randomization on the first time step as a fu
tion of randomization inZ(0). Both parts use the concep
of excitation distribution and functional threshold.

A. Neuronal excitation before training

Although the excitation received by each individual ne
ron changes radically across a single trial, the shape of
excitation distribution remains relatively unchanged fro
time step to time step within a trial. The excitation distrib
tion and the position of the functional threshold offers im
portant insights into the parametric sensitivities of the mo
@24,32#. On each time step of a simulation, feedback a
feedforward inhibition change the amount of recurrent ex
tation needed to fire a neuron. This fluctuating minimu
amount of excitation to fire a neuron is thefunctional thresh-
old. Rewriting Eq. ~1!, the following formula determines
functional threshold when all synaptic weights are equa
w:

S5 d 1w @KRm~ t21!1KIme1K0# e.
Using an untrained simulation presented with a sim

twenty-pattern sequence, Fig. 9 locates the functional thr
old relative to the excitation distribution where an excitati
is the numerator of Eq.~1! for each neuron. Note the larg
number of neurons whose excitations are very close to
functional threshold. This indicates that many neurons in
untrained network receive either just enough excitation
fire, or receive just under the excitation needed to fire.
claim that these near-threshold neurons are more sensiti
changes in the network firing state on the previous time s
than neurons with excitations far from functional thresho
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The idea relevant toZ(0) is that any small change coul
push the excitations near the firing threshold to the other s
of the threshold. That is, changing the set of neurons that
on the previous time step leads to large differences in wh
neurons actually fire on the next time step, although
shape of the excitation distribution remains unchang
Thus, we hypothesize that those neurons near functio
threshold hold the key to understandingZ(0) effects.

As a simulation is trained on specific sequences, syna
weights modify in response to those sequences~see, for ex-
ample, Ref.@33#!. As a result, excitation distributions afte
training differ markedly from excitation distributions befor
training, particularly near the functional threshold. Aft
training, fewer neurons are in the vicinity of the function
threshold than before training~compare Fig. 10 to Fig. 9!.
This tendency for neural excitations to move away from
functional threshold makes it more difficult forZ(0) based
randomizations to affect firing after time step one. Thus,
histograms of excitation explain why initial sensitivity drop
as training progresses, and they explain whyZ(0) random-
ness does not harm test performance.

B. Predicting sensitivity to initial conditions before training

In line with the suggestion thatZ(0) randomness perturb
the neurons that have near-threshold internal excitations
develop a mathematical expression that describes the e
of Z(0) randomness on neurons as a function of their ex
tation relative to functional threshold. This theoretical a
proach confirms the validity of the shuffling around thres
old concept as described above, and it makes this hypoth
exact. Specifically, we consider a random process
shuffles histogram occupancies to the left and to the righ
the threshold and calculate the general expression that

FIG. 9. Before training the excitation distribution is approx
mately normal with the functional threshold appropriate for the
tivity level. Neurons to the right of the functional threshold will fire
those to the left will not. Only neurons that will be incorporated in
the network’s firing at the end of training contribute to the exci
tion distribution. This distribution was measured from time step
of a simple sequence 20 time steps~patterns! long. The shape of the
distribution remained unchanged regardless of the time step ge
ating the data. The simulation parameters were the same as
used for Fig. 1.
4-9
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mates the effect of this shuffling. The calculation predi
E$dnH@Z(1),Z8(1)% given dH@Z(0),Z8(0)#.

The shuffling process is quantified as a two-step proc
using two functions,L andR. The functionL maps an initial
stateZ(0) to a ‘‘loss’’ stateZL(0) by deactivatingD active
neurons inZ(0). The function R mapsZL(0) to a ‘‘reacti-
vated’’ initial stateZ8(0) by activatingD inactive neurons in
ZL(0) with the restriction that none of theD newly activated
neurons can be one of the neurons deactivated by theL func-
tion.

Theory. Specify the set of constants,b5$N,a0 ,c,S,me%
~see Methods for definition of constants!. Then,

E$dnH@Z~1!,Z8~1!#ub,dH@Z~0!,Z8~0!#52D%

5
~N2me!

X~N2me! (
h5S

Nc S Na0

h D S N2Na0

Nc2h D1S N
NcDmeC

3 (
f 50

S21

(
k50

S21

(
h5S

Nc S D
f 2kD S N2Na02D

Nc2~h1 f 2k! D S D
h2kD

3S Na02D
k D ,

whereS is the critical number of inputs needed to fire a
neuron not fired externally on time step 1.

Appendix A derives this result and shows how a sm
difference in the vectorZ(0) can quickly lead to divergen

FIG. 10. Training alters the excitation distribution including t
number of neurons in the vicinity of functional threshold. Aft
training, fewer neurons are located near the functional thres
than before training~cf. Fig. 9!. Combined with the finding tha
training reduces sensitivity toZ~0! perturbations, this change i
excitation distribution around threshold supports the idea thatZ~0!
sensitivity is greatest when many neurons have excitation le
near the functional threshold. The excitation data comes from
training simulation on the (AB)(AB)(AB)(a)(a)(a)(1)(1)(1)
sequence~see Methods! after all training is completed. Excitation
were recorded from the simulation’s response to time step 6~ap-
proximately the middle of the externally driven sequence of inpu!.
Only neurons that were incorporated into the network’s firing at
end of training contribute to the excitation distribution. Simulatio
were parametrized as in Fig. 1.
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network paths through state space. In Fig. 11, the predict
of this theory are compared with empirical observations
tained from simulations. Based on this comparison, it see
we have a quantitatively acceptable theory of the model.
eraged over 70 different randomly connected networks
8000 neurons running at approximately 1.25% activity, e
pirical observation of sensitivity to initial conditions tightl
follow the theorem’s prediction~the theoretical calculation
deviates outside the standard error of the mean for only
out of 15 points!. Such comparisons are robust across nu
ber of neurons and activity level.

V. DISCUSSION

Computational simulations here and elsewhere@5# dem-
onstrate that randomizing the initial state will enhance lea
ing by our hippocampal CA3 model. Simulations with larg
randomizations ofZ(0) during training are more successf
during testing than simulations in which the initial state ve
tor is left constant.

These beneficial effects, which arise from initial state ra
domness during training, correlate with a greater range
activity states visited by a simulation in the early trainin

ld

ls
a

e

FIG. 11. The theorem based prediction of sensitivity to init
state randomness closely follows empirical observations. Plo
here are pairs of points. One point~* ! is the expected sensitivity to
initial state randomness produced by the theorem~see Appendix A!.
The other point~d! of each pair is itself derived from pairs o
simulations. This plotted data point is the average of 70 such p
of simulations. Each set of 70 paired simulations is parametri
with initial state vectors that differ according to the normaliz
Hamming distance indicated by thex axis. As can be deduced b
Eq. ~B1! in Appendix B, there is an explicit relationship betwee
fractional randomness~defined in Sec. II D! and expected normal
ized Hamming distance:r 5E(12a)/(12a2Ea), wherer repre-
sents fractional randomness, a represents activity, andE represents
expected normalized Hamming distance. As described in Sec.
sensitivity of initial conditions is quantified in terms of normalize
Hamming distance, which measures the distance in state spac
tween temporally matched firing states for a pair of simulatio
Each data point plots normalized Hamming distance, measure
time step 1, each pair having a unique randomly generated con
tivity. The simulations were parametrized as:N58000, w50.4,
a052.5, me520, u50.5, KR50.053 952 5, KI50.01, K0

51.195 25.
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trials. This greater range of the simulation’s path throu
state space across training trials, referred to as ‘‘search
itself correlated with more robust performance which,
definition, must arise from better encodings. Fortunately
synaptic weights and codewords mature with each tria
training, a simulation grows less and less sensitive to
effects of initial state randomization. As a result, the eff
that enhances search does not disrupt testing.

The observed beneficial effects of initial state randomi
tion in our model are analogous, in a certain sense, to
more well-known effects of randomness in simulated ann
ing @34# ~and see also Refs.@35,36# for a possible application
corresponding to the biology of the hippocampus!. Con-
trolled randomization of movement through state space
simulated annealing improves performance by forcing a s
tem to explore regions of state space outside of a local o
mum. Moreover, and similar to observations of Fig. 6, t
effect of this randomization in simulated annealing, the d
tance covered by this exploration through state space les
over time. However, in simulated annealing, temperature
typically decreased over time by an external control mec
nism and a special schedule@37,38#. In contrast, the lessen
ing effect of randomness over time in this model is an em
gent property of the model itself, a property which was n
explicitly designed into the model.

Based on the observations here, the time of and just a
the introduction of a new sequence seems most vital bec
it is then that the broad search of state space occurs. In
ducing a novel training sequence of active external inp
forces the network to use previously unused neurons. Du
the first few trials after the introduction of a new sequen
the weights of these newly active neurons have not yet
bilized, and relatively many neurons have excitation lev
near the functional threshold, as in Fig. 8. It is during th
period of larger trial-to-trial variation of neuronal activatio
that more random variations of the initial state create fu
tionally important fluctuations in the neurons near thresho
The theorem of Sec. IV and Appendix A substantiates h
critical the neurons just to either side of threshold are in t
process.

This hypothesized expanded search, leading to better
of coactive neurons, which is to say good codes, is defi
further by the observation that randomization of the init
state vector increases the average length of local context
rons. @Average context length has a strong positive line
correlation with TP performance (r 250.95).# That is, aver-
age local context length is a way of quantifying good cod
for solving TP. In particular, the existence of such a defin
good code with larger average context lengths implies th
simulation has associated temporally distant portions of
training sequence. As a result of these longer-lasting lo
context neurons, there is a more stable cell-firing bridge
span temporally distant portions of the training sequen
Thus, initial state randomness helps the network create
terns of cell firing that lead to improved sequence predicti

Our current hypotheses are supported, both qualitativ
and quantitatively, through the idea of the sensitivity of t
model’s firing patterns to initial state randomness. The th
rem given in Appendix A shows how differences in the init
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state before training quickly affect differences in the mode
neuronal firing patterns. Figure 11 provides an empiri
demonstration of the theorem’s accuracy. By providing
means of quantifying the rate of search through state spac
a function of initial conditions, the theorem comprises a cr
cal first step in understanding how the model finds via
firing patterns to recode input sequences.
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APPENDIX A: QUANTITATIVE ANALYSIS OF
SENSITIVITY TO INITIAL CONDITIONS

Preliminaries: Consider a sparse, randomly connected
current neural network described by Eqs.~1! and ~2!, with
fixed parametersN, me , w, a0 , KR , KI , andK0 . To measure
the sensitivity of firing sequences toZ(0) randomness, two
simulations are run with the same connectivity. One simu
tion is initialized by state vectorZ(0) and the other simula
tion is initialized by state vectorZ8(0). Each simulation pro-
duces a set of firing patterns on the next time step. These
calledZ(1) andZ8(1), respectively. Here, by definition, th
number of active neurons on time step zero isNa0 , or
equivalently for these binary neurons,

a05P@Zj~0!51#5P@Zj8~0!51#.

Define a positive integerD, such that,

D[
dH@Z~0!,Z8~0!#

2
,

wheredH is Hamming distance. We will useD to represent
the number of neurons perturbed fromZ(0) to Z8(0).

Indicate the probability that a neuronj receivesh active
inputs as

PS (
i 51

N

ci j zi5hD .

Further, defineSas the minimum number of active inpu
needed to fire a neuron inZ(1) or Z8(1).

Theorem. Specify the set of constants, b
5$N,a0 ,S,c,me%. Then
4-11
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E$dnH@Z~1!,Z8~1!#ub,D%

5
~N2me!

F ~N2me! (
h5S

Nc S Na0

h D S N2Na0

Nc2h D1S N
NcDmeG

3 (
f 50

S21

(
k50

S21

(
h5S

Nc S D
f 2kD S N2Na02D

Nc2~h1 f 2k! D S D
h2kD

3S Na02D
k D .

Note that this theorem is derived from the product of th
hypergeometric distributions. To prove the theorem, we o
four supporting lemmas.

Lemma 1. Let Sbe the critical number of inputs needed
fire a neuron via recurrent inputs on time step 1. ThenS is
given by

S5 dK01KRm~ t21!1KIme

w e.
Proof. See Ref.@24#.
Lemma 2. Recall the definition of the setb. The probabil-

ity of a neuronj receiving h active inputs is given by the
hypergeometric distribution

PS (
i 51

N

ci j zj5hD 5

S Na0

h D S N2Na0

Nc2h D
S N
NcD

.

Proof. A sample of sizeNc is to be randomly chosen from
N neurons of whichNa0 are active neurons andN-Na0 are
inactive neurons. Leth be the number of neurons in th
sample picked that are active. The probability of choosinh
active neurons out of a sample ofNc neurons is the hyper
geometric given above. Q.E.D.

Perturbation ofZ(0): To facilitate discussion of Lemma
3 and 4, we define two functions, one calledL and another
called R. These functions allow us to perform a stepwi
analysis of the process through which we randomly pert
neurons to createZ8(0) from Z(0).

The function L maps an initial state vectorZ(0) to a
‘‘loss’’ state vectorZL(0) by randomly deactivatingD active
neurons inZ(0) ~i.e., resetting their binary firing states from
1 to 0!. We denoteL@Z(0)# asZL(0). ZL(0) is a state vector
identical toZ(0), except thatD active neurons inZ(0) have
been deactivated. Thus,

(
j 51

N

Zj
L~0!5(

j 51

N

Zj~0!2D.

The functionR mapsZL(0) to a ‘‘reactivated’’ initial state
vector Z8(0) by randomly activatingD inactive neurons in
ZL(0), with the restriction that none of theD newly acti-
vated neurons can be one of the neurons previously de
03191
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vated by theL function. Thus,R@ZL(0)#5Z8(0). Since the
total activities ofZ(0) and ofZ8(0) are equal, we can write

(
j 51

N

Zj8~0!5(
j 51

N

Zj
L~0!1D5(

j 51

N

Zj~0!5Na0 .

Lemma 3. Recall the definition of the setb. The probabil-
ity that a neuronj receivesk active inputs whenD active
neurons are removed fromZ(0) given that neuronj origi-
nally receivedh active inputs fromZ(0) is given by

PS (
i 51

N

ci j Zi
L5ku(

i 51

N

ci j Zi5hD 5

S D
h2kD S Na02D

k D
S Na0

h D .

Proof. The number of ways a neuronj can receiveh active
inputs is

S Na0

h D .

Of these, thek inputs left active inZL(0) can be chosen
without replacement, fromNa02D neurons@since ZL(0)
containsD fewer active neurons than doesZ(0)# giving

S Na02D
k D ,

different possibilities.
But the loss ofh2k active inputs can only come from th

D active neurons removed fromZ(0) to form ZL(0) giving

S D
h2kD ,

possibilities.
These last two counts are independent, and thus are

tiplied together to get total number of waysZL can occur.
Q.E.D.

Lemma 4. Recall the definition of the setb. The probabil-
ity that a neuronj receivesf active inputs fromZ8(0) given
that neuronj receivedh active inputs fromZ(0) andk active
inputs fromZL(0) is given by

PS (
i 51

N

ci j Zi85 f u(
i 51

N

ci j Zi
L5k,(

i 51

N

ci j Zi5hD
5PS (

i 51

N

ci j Zi82(
i 51

N

ci j Zi5 f 2ku

(
i 51

N

ci j Zi
L5k,(

i 51

N

ci j Zi5hD
5

S D
f 2kD S N2Na02D

Nc2~h1 f 2k! D
S N2Na0

Nc2h D .
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Proof. The proof is analogous to that for Lemma 3 exce
here we must take into account thatNa0 neurons inZL can-
not be perturbed by the functionR, and thath of the Nc
inputs cannot be part of the inputs selected by this funct
Q.E.D.

Proof of the theorem. For any given$Z(1),Z8(1)% pair,
let us enumerate across all neurons, the effect of the pe
bationD,

n15u$ j :Zj~1!51,Zj8~1!50%u,

n25u$ j :Zj~1!50,Zj8~1!51%u,

n35u$ j :Zj~1!51,Zj8~1!51%u,

n45u$ j :Zj~1!50,Zj8~1!50%u.

These are all the possibilities partitioned, thusn11n21n3
1n45N. Because the number of active neurons inZ(1) and
Z8(1) are by assumption equal,n11n35n21n3 , and thus,
03191
t

n.

r-

n15n2 . But by the standard Hamming distance definitio
dH@Z(1),Z8(1)#5n11n2 , which gives us a normalized
value of

dnH@Z~1!,Z8~1!#5~n11n2!/2~n11n3!

52n1/2~n11n3!5n1 /~n11n3!,

which is just the empirical conditional probabilityP@Zj8(1)
50uZj (1)51#. That is,

dnH@Z~1!,Z8~1!#5P@Zj8~1!50uZj~1!51#. ~A1!

The problem is thus reduced to determining the conditio
probability in Eq.~A1!. Denote the set of all neurons that a
fired externally asM, whereM has cardinalityme ,

P@Zj8~1!50uZj~1!51#5P@ j PM ,Zj8~1!50uZj~1!51#

1P@ j P” M ,Zj8~1!50uZj~1!51#.

Externally fired neurons cannot be turned off, thus
5P@ j P” M ,Zj8~1!50uZj~1!51#5P@Zj8~1!50uZj~1!51,j P” M #P@ j P” M uZj~1!51#

5$P@Zj
L~1!50,Zj8~1!50uZj~1!51,j P” M #1P@Zj

L~1!51,Zj8~1!50uZj~1!51,j P” M #%.

P@ j P” M uZj~1!51#5$P@Zj8~1!50,Zj
L~1!50uZj~1!51,j P” M #10%P@ j P” M uZj~1!51#

5PS (
i 51

N

ci j Zj8~1!,S,(
i 51

N

ci j Zj
L~1!,Su(

i 51

N

ci j Zj~1!>SD P@ j P” M uZj~1!51#

5P@ j P” M uZj~1!51# (
f 50

S21

(
k50

S21

PS (
i 51

N

ci j Zj8~1!5 f ,(
i 51

N

ci j Zj
L~1!5ku(

i 51

N

ci j Zj~1!>SD
5P@ j P” M uZj~1!51# (

f 50

S21

(
k50

S21 PS (
i 51

N

ci j Zj8~1!5 f ,(
i 51

N

ci j Zj
L~1!5k,(

i 51

N

ci j Zj~1!>SD
PS (

i 51

N

ci j Zj~1!>SD
5

P@ j P” M uZj~1!51#

P@Zj~1!51u j P” M # (
f 50

S21

(
k50

S21

(
h5S

Nc

PS (
i 51

N

ci j Zj8~1!5 f ,(
i 51

N

ci j Zj
L~1!5k,(

i 51

N

ci j Zj~1!5hD
5

P~ j P” M !

P@Zj~1!51# (
f 50

S21

(
k50

S21

(
h5S

Nc

PS (
i 51

N

ci j Zj8~1!5 f ,(
i 51

N

ci j Zj
L~1!5k,(

i 51

N

ci j Zj~1!5hD . ~A2!

By the definition of conditional probability, one has

PS (
i 51

N

ci j Zj8~1!5 f ,(
i 51

N

ci j Zj
L~1!5k,(

i 51

N

ci j Zj~1!5hD
5PS (

i 51

N

ci j Zj~1!5hD PS (
i 51

N

ci j Zj
L~1!5ku(

i 51

N

ci j Zj~1!5hD PS (
i 51

N

ci j Zj8~1!5 f u(
i 51

N

ci j Zj
L~1!5k,(

i 51

N

ci j Zj~1!5hD .
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The three probabilities in the above equation are given
Lemmas 2, 3, and 4, respectively. So, substituting into
~A2!, replacing these probabilities with their respective h
pergeometrics, simplifying, and taking the expected va
over multiple simulations, we have,

E$dnH@Z~1!,Z8~1!#%

5
~N2me!

X~N2me! (
h5S

Nc S Na0

h D S N2Na0

Nc2h D1meS N
NcD C

3 (
f 50

S21

(
k50

S21

(
h5S

Nc S D
f 2kD S N2Na02D

Nc2~h1 f 2k! D S D
h2kD

3S Na02D
k D ,

by construction of those probabilities and the definition oS
given by Lemma 1. Q.E.D.

APPENDIX B: RELATING NORMALIZED HAMMING
DISTANCE TO FRACTIONAL RANDOMNESS

In order to vary randomness in a systematic and com
tationally efficient way, the TP simulations used fraction
randomness~see Methods!, defined as the independent va
able r. Despite this, the theory described in Appendix
quantifiesZ(0) randomness in terms of normalized Ham
ming distance. Fortunately, there is a strong relationship
tween fractional randomness and the Hamming distance
tweenZ(0)’s used in different trials.

The relationship between fractional randomness,r, and
normalized Hamming distance comes from the definitions
fractional randomness and normalized Hamming dista
themselves~see Sec. II E and II F!. Of particular importance
is the procedure that uses fractional randomness to rando
vary Z(0) from trial to trial in a controlled manner. We wil
find that the method of fractional randomness provide
good approximate control over trial-to-trialZ(0) normalized
Hamming distance.

Recall that to createZ(0) with fractional randomnessr,
one set of active neurons is fixed from trial to trial, and t
rest of the active neurons are chosen randomly from the
maining neurons inZ(0). Defineg as a random variable tha
represents the number of active neurons that could have
randomly perturbed, but were not, and defineq as the num-
ber of active neurons held fixed~that is, could not be per
turbed!. Thus, the total number of active neurons~repre-
sented byNa0! is the sum of those that were perturbed~half
the Hamming distance!, plus those that could have been pe
turbed but were not~g!, plus the ones held fixed~q!,

Na05
dH@Z~0!,Z8~0!#

2
1g1q.

Rearranging this equation in terms of normalized Hamm
distance,
03191
y
.

-
e

u-
l

e-
e-

f
e

ly

a

e-

en

-

g

dnH@Z~0!,Z8~0!#5
Na02q2g

Na0
.

We are interested in the average normalized Hamming
tance, as a function ofg. To find this, note the probability
thatg neurons are randomly selected to fire in bothZ(0) and
Z8(0),

P~g5x!5

S Na02q
x D S N2Na0

Na02q2xD
S N2q
Na02qD .

This is a hypergeometric distribution, with expectation

E@g#5
~Na02q!2

~N2q!
.

Thus, the expected normalized Hamming distance is

E$dnH@Z~0!,Z8~0!#%5

Na02q2
~Na02q!2

~N2q!

Na0
.

Recalling the definition of fractional randomness,

r 5
Na02q

Na0
,

which implies

q5Na02Na0r .

Now, substituting forq produces an expression that dete
mines expected normalized Hamming distance in terms
activity and fractional randomness

E$dnH@Z~0!,Z8~0!%

5

Na0r 2
~Na0r !2

~N1Na0r 2Na0!

Na0

5r 2
a0r 2

~12a01a0r !
5

r ~12a0!

~12a01a0r !
. ~B1!

This difference between average normalized Hamm
distance and fractional randomness increases as fract
randomness or activity increases, but not by much. In p
ticular, when fractional randomness is zero, expected n
malized Hamming distance is zero, whereas, at fractio
randomness of one, expected normalized Hamming dista
is 12a0 . For example, when fractional randomness51 and
a050.1 ~as in our TP simulations!, the average normalized
Hamming distance between any twoZ(0)’s used in training
is 0.9.
4-14
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