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Initial state randomness improves sequence learning in a model hippocampal network
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Randomness can be a useful component of computation. Using a computationally minimal, but still biologi-
cally based model of the hippocampus, we evaluate the effects of initial state randomization on learning a
cognitive problem that requires this brain structure. Greater randomness of initial states leads to more robust
performance in simulations of the cognitive task called transverse patterning, a context-dependent discrimina-
tion task that we code as a sequence prediction problem. At the conclusion of training, greater initial random-
ness during training trials also correlates with increased, repetitive firing of select individual neurons, previ-
ously named local context neurons. In essence, such repetitively firing neurons recognize subsequences, and
previously their presence has been correlated with solving the transverse patterning problem. A more detailed
analysis of the simulations across training trials reveals more about initial state randomization. The beneficial
effects of initial state randomization derive from enhanced variation, across training trials, of the sequential
states of a network. This greater variation is not uniformly present during training; it is largely restricted to the
beginning of training and when novel sequences are introduced. Little such variation occurs after extensive or
even moderate amounts of training. We explain why variation is high early in training, but not later. This
automatic modulation of the initial-state-driven random variation through state space is reminiscent of simu-
lated annealing where modulated randomization encourages a selectively broad search through state space. In
contrast to an annealing schedule, the selective occurrence of such a random search here is an emergent
property, and the critical randomization occurs during training rather than testing.
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[. INTRODUCTION state. For example, the best performance on this cognitive

task occurs when randomization at time zero is chosen so as

Random fluctuations are generally an undesirable featur® produce the greatest randomizing effect on a future state
of information processing systems including sequence learrof the network.

ing neural networkge.g.,[1]). Investigations of both bio- Here we extend these results in three ways to gain greater
logical and artificial neural systems have, however, showrnnsight into the mechanisms by which initial state random-
that such fluctuations can improve performaf2g,4,3. ization controls randomization of later states of the network

Using our hippocampal modé¢b], we have previously simulations. In contrast to the previous styéy, where the
shown that random fluctuations are important for robustumber of neurons firing in the initial vect@i(0) was var-
learning and that the model is sensitive to initial conditions.ied, here we investigate the effect of randomly varying the
By quantifying this sensitivity in a recurrent, sequence-firing neurons for a specified fraction of ea#{0) vector,
learning neural network model and by correlating it with while the total number of neurons is kept fixedror ex-
learned performance, we have made three, related observample, suppose there are 1000 neurons and total activity is
tions about the role of randomization in learning the cogni-set to 90 particular neurons out of these 1000; then if the
tive task called transitive inferend&l). First, this model is  specified randomization is 50%, 45 out of these 90 will be
sensitive to randomization of the network state produced byandomly exchanged with the other 910 neurpis.collo-
an external influence even when randomization is limited tayuial terms, the random variation @f(0) from trial to trial
time step zero of each trial. Second, the model is most sereorresponds to beginning each training trial with a different
sitive to this randomization when the probability of neuronalstate of mind.
firing on time step zero equals the nominal, preset activity A second difference from our previous study is the use of
level implicit in the parametrization of these randomly con-a different cognitive task, transverse patterniiidg?). Both
nected networks. Third, a strong positive correlation existshe TI studied previously and TP studied here require normal
between the model's success in learning Tl and the effedtippocampal functiofi6,7] if they are to be learnedThus a
that time step zero randomization has on the next networlgood network model of the hippocamp{®,9] should be

able to learn both taskdnterestingly, Tl and TP are comple-
mentary cognitive tasks in the sense that Tl is a context
*Present address: Department of Computer Science and Engineetfependent, linear inferential task and TP is a context depen-
ing, University of Washington, Box 352350, Seattle, WA 98195- dent, nonlinear inferential task. In particular, success at TP

2350. Email address: aaron@cs.washington.edu requires learning when each of three symbols is correct as in
"Email address: xw3f@virginia.edu the following situations: whe\ and B are concurrentA is
*Email address: dws3t@Vvirginia.edu correct; wherB andC are concurrent, theB is correct; and
SAuthor to whom correspondence should be addressed. Email advhenA andC are concurrent, the@ is the right answefas

dress: wbl@virginia.edu in the playground game rock-paper-scis$ors
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A third difference is the substantial extension of our un- 1.00+
derstanding of the mechanisms through which initial state g a
randomization works. By performing systematic measure- %%0.75_
ments of network states as functions of initial state random- = g
izations, we are able to develop and define the hypothesis of E §
a randomly driven state space search during early phases of 5 § 0-507
learning. H s
Because this model is not derived from the typical recur- § 2 0.25-
rent neural model used by physici$t] (although it is re- il
lated to many of these modglsan overview of the model by a
seems appropriate. This overview consists of the cognitive, 0.00 T T T 1
0.00 0.25 0.50 0.75 1.00

biological, and computational concerns that motivated this
network.

Based on hypothesized hippocampal computational func- |G, 1. Randomness &(0) facilitates learning of TP. Perfor-
tions that explain generalized hippocampal function in beémance begins improving once approximately 50% ofZii@) neu-
havioral and cognitive contexts8,9], the model performs rons are randomized from trial to trial. The fraction of the simula-
sequence learning while at the same time functions as a rafiens that successfully learned TBee Sec. Il Cis plotted as a
dom recoder. From these two basic characteristics arises d@mction of the number of randomly chosen neurons in ea()
ability to solve problems, whose solutions are only possiblestate of a simulation. See Sec. IIE and the Introduction for our
by use of contextual informatiofe.g., Refs[9,11]). The idea  definition of randomness and an example of a randomization. Thirty
that the hippocampus is a sequence learning/predicting delifferent simulations(each with different random connections be-
vice is controversial. While several research groups seem tveen its neuronswere trained and tested at each levelZdD)
agree[12,13,14,15,1F there are other opinion@.g., Refs. randomness. Inhibition constants were selected to achieve approxi-
[17,18). mately 10% activity. EactZ(0) vector contained 102 active neu-

In terms of specifics, the model uses McCulloch-Pitts'ons. All Z(0) vectors were sets of neurons orthogonal to the set of

neurons modified for divisive inhibition. The connectivity of €xternal inputs. ‘Simulation parametersi=1024, m,=32, e
the model is recurrent, sparse, excitatory, and random exceﬁtO'OS'K'_0'048'KR_0'048'K0_0' w=0.4, andc=0.1.
for feedback and feedforward inhibition that are global. Neu-

rons driven by external inputs are incorporated without dis_details), the results of the computational simulations demon-

tinction into the recurrent network. That is, externally acti- SIrate a strong positive correlation betwet(®) randomness

vated neurons are also randomly embedded into th@nd probability of learning TEFig. 1). The results also dem-

network’s sparse, recurrent connectivity. onstrate a strong positive correlation betw&g€0) random-
Associative synaptic modification is an autonomous prop1€ss and the average firing periods of specific sets of neu-

erty of each excitatory synapse. The synaptic modificatiorfons; calledocal context neuronsThese neurons fire only on
rule is local, asymmetrically time spanning with both poten-sPeC'f'C and contiguous time steps of a particular sequence

Z(0) fractional randomness

tiation and depression possilj£9,13,20,2]. and thus are subsequence detectors, and are analogous to
Finally, the overall model performance is not based onth® hippocampal place cellf23]. Local context neurons
any asymptotic theory. Although isolated synapégs will were previously showh22] to play an important role when

tend to take on a strength proportional to the conditionafimulations of the model solve the transverse patterning
meanE [presynaptic input at (t—1)|postsynaptic neurop prob'lem.. ThIS., and addltlonal results, reveal tH#0) ran-
fires att], the entire network cannot be seen as converging t§lomization drives a searchlike process to produce more ro-
some asymptotic limit. At the end of training, there are tran-Pust learning. ) o o
sient attractors, but rarely are there stable points in state Finally, our studies of neuronal excitation distributions
space after training on the transverse patterning problem. ARNd &n accompanying theorem provide a firmer basis for un-
though somewhat disappointing from a theoretical view-derstanding how initial state variations help the model de-
point, the model reproduces the learning rates seen in beha¥€!op robust internal codes to solve problems.
ing animals(see Ref[22] for one such comparispnwhich
is really the final arbiter of the model’s success or failure. Il. METHODS

In this study, we manipulate only one of the two sources
of randomness that exist in our minimal model of hippocam-
pal CA3. One source of randomness, which makes each Our computationally minimal moddlFig. 2(a)] of the
simulation different, is the randomly determined initial con- hippocampus consists of a sparsely conne¢i€d4 recur-
nectivity of each simulation. The second source of random+ent network of McCulloch-Pitts neurofi8]. External inputs
ness, and the object of manipulation and study here, is theepresent signals to CA3 from the entorhinal cortex and the
composition of the set of neurons that fire just before eaclidentate gyrus. However, most of the excitation is recurrent.
training and test trial. This set is specified by the vector In this model, a neuron’s internal excitation on time step
Z(0). of a trial is the sum of the weights of its recurrent inputs that

Defining randomness in terms of how many neurons aravere active on time stefd { 1). This excitation is divided by
perturbed and how many are kept const@@e Sec. Il for a term representing shunting inhibition to obtain a value on

A. Network architecture
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a. Simplified Hippocampal Model b. Sparse, Random Recurrent Excitation
in CA3
>—©
output
cA3 . ‘ P
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-

output

inhibitory neuron O excitatory synapse -+—

FIG. 2. The basic hippocampal modé&) The external input t&€ A3 is sparse and excitatory, representing a combination of the inputs
from entorhinal corteXEC) and dentate gyrudG). The strongest input to the network is its own recurrent excitation. Both the external and
recurrent inputs are accompanied by proportional activation of inhibitory nedrprhe output of the network is the firing vector of the
CA3 neurons themselve&) Schematic depiction of the sparse nature of the recurrent excitatory synapse<a@f3hesurons. KeyCA3
pyramidal neurongA), recurrent excitatory synapses on these neu(@s

the interval0, 1] [24]. Formally, the internal excitatiop;(t) tivity ). Herec was always 10%; thus our model is character-
of neuronj on time stept is ized by sparse connectiviffig. 2(b)].
Two types of trials may take place during a simulation:

N .. . .. .
training and test During training, a network is presented

EWijCijZi(t_l) . - . . - .
i—1 with a prespecified input sequence and synaptic modification
yi(t) = x N , is allowed to occur. A training trial begins at time step zero
S Wi ciizi(t— 1)+ Kgm(t— 1)+ Ko+ K; = x(t) with synaptic modification inactivated, and the firing state of
- _

i=1 the network specified by the vectd(0). Then follows the

1) presentation of the training input sequence, with synaptic
modification allowed throughout the sequence. Between
training trials, the network autonomously adjusts its inhibi-
tory parametergKg, K,, andK,) to keep activity levels
relatively stable(for details, see Ref.25]). A test trial also
begins with an initial firing state specified &(0). During a
test trial, the network is presented with a part of the training
sequence and is expected to produce an output corresponding

—1). The binary variable(t) represents the firing of an 5 5ne of three possible answers. No synaptic modification
external input to neuroin on time stept. The variablem(t takes place within a test trial.

—1) represents the number of neurons in the network that

fired on time stept(—1). The denominator of Eq1) con-

tains three inhibitory parameterk; scales feedforward in- B. The synaptic modification rule

hibition of external inputsiK g scales feedback inhibition as a This model learns via locally driven synaptic modifica-

func_t|on of recurrent neuronal fmng; ‘?lr.ido represents a tion, using a time-dependent associative synaptic modifica-
resting conductance. These three inhibitory parameters ael\igm rule [8,26]. On each time step of each training trial, the

set such that activity levels are maintained around a desired . - - -
. . . eight of every synapse in the network is updated accordin
value. We use the method described in R24] to determine to tﬁe equatior): ynap P 9

the best values for these inhibitory parameters.
After calculating each neuron’s internal excitation, an out- Wi (t+1)=w;j (1) +z;()e[z(t—1) —w;(t)], 3
put firing decision occurs—eithe O or a 1representing the
absence or presence of an action potential respectively. The
firing functionz; is determined on time stefby the equation = wheree is a small positive constant, typically 0.05. Synaptic
modification in this model depends completely on the firing
1 if yj(t)=0.5 or if x;(t)=1, of postsynaptic neurop if the postsynaptic neuron does not
0 otherwise : 2) fire, the synaptic weight does not change. If the postsynaptic
neuron fires on the time step immediately after the presyn-
At the beginning of each simulation, the neuronal connecaptic neuron fires, then the connectiof is strengthened.
tions are specified randomly, such that each neuron receivéonversely, if the postsynaptic neuron fires when the presyn-
the same number of recurrent synaptic connections. Whilaptic neuron has not fired on the previous time step, then the
the number of connections made by each neuron varies argynaptic weight decreases. After many training trials, synap-
follows a binomial distribution around the mean valMe  tic modification produces synaptic weights that are condi-
(whereN is the number of neurons ards percent connec- tional probabilities a&[ Z;(t—1)|Z;(t)=1] [27].

whereN is the total number of neurons. A synaptic connec-
tion from neuroni to neuronj is represented by;; (1 if a
connection is present, 0 if no connection is presenhe
weight of the synapse from neurdnto neuronj is repre-
sented byw;; . The variablez;(t—1) represents the binary
[z(t) €{0,1}] firing of recurrent neuron on time step {

zj(t)=
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C. The transverse patterning problem External Inputs

The TP task[28] requires a choice from among three
stimuli, A,B,C which are presented to the network as simul-
taneous pair¢AB,BGC or CA). We refer to trials for each of
these three stimulus pairs assabtask Figure 3 illustrates
the firing of external neurons used in training to define the
two possible version§.e., right and wrongof the AB sub-
task.

In TP experiments, the experimenter trains the subject
(human, animal, or a simulated neural netwdrkchoose the
correct stimulus in each pair. First, a stimulus pair is pre-
sented to the subject, then the subject chooses one stimulus
in that pair, and then the subject is told whether its decision
was correct or incorrect. This training cycle occurs repeat-
edly. The stimulus pairings are circular with respect to the
correct decision: the stimulué is correct whenAB co-
occurs, the stimuluB is correct wherBC co-occurs, and the
stimulusC is correct wherCA co-occurs. As a result of the
symmetry of right and wrong, the correct decision can only
be made using the contextual knowledge of the stimulus pair
itself.

To train a network on TP, we create six training se-
guences, two for each subta@kg., Fig. 3 corresponding to
the correct and incorrect decisions. Each training sequence
consists of three orthogon@ionoverlappingpatterns of ex-
ternally fired neurons. The first pattefAB, BC, or CA) rep-
resents a stimulus pair, the second pattern a “decisiartj,
or c¢) represents the choice between the two stimuli, and the
third pattern(4+ or —) represents the outcom@ight or
wrong) of the decision. Each pattern is presented for three
consecutive time steps. We use this presentation method be-
cause it enhances performance on the transverse patterning
problem [22] and because stimuli are not instantaneous
events. Figure 3 illustrates the configuration of external in-
puts during training for thé\B subtask. The six training se-
guences for TP are:

(AB)a+ (AB)b-

Neurons 1-210 (neurons 211-1024 not shown)

Sequence wi/correct Sequence w/incorrect
Subtask decision decision

Time

AB  (AB)(AB)(AB)aaa+++ (AB)(AB)(AB)bbb———
BC  (BC)(BC)(BC)bbb+++ (BC)(BC)(BC)cce— — —
CA  (CA)(CA)(CA)ccct++ (CA)(CA)(CA)aaa— ——

Here we employed a progressive training paradigm, as

has been used in behavioral experimé[8s29] see Ref[30] FIG. 3. Firing diagrams for a TP subtask. The left firing dia-

for a computationally based comparison of different trainingd@™: @B)a+, shows an input sequence for A training trial
with a correct decision, a, and its positive outcome,The firing

methods that reflect the animal and human literaturethis ) ) . h
. o . . diagram to the rightABb—, shows the external input for an incor-
paradigm, training occurs in blocks of trials for each subtask;

L e . . fect trial where theb, decision is made and its negative result is
Within a block, training trials are mixed between the two signaled, —. Note the orthogonal nature of the external inputs:

training sequence(s+_ e_md —) for the S_UbtaSk' This mixing stimulus A, neurons 1-16; stimuluB, neurons 17-32; decision
between the two tfa'”'”g_ sequences IS psel_Jdoran_de and pﬁttern a, neurons 49-80; decision patterneurons 81-112; out-
constant across simulations. The progressive training pargyme for the correct response—neurons 145—-176; outcome for the
digm begins with four blocks of 30 training trials consisting jncorrect response—neurons 177—208. Because the network is ran-
of only theAB subtask. Blocks of 20 training trials on tB&  gomly connected, the spatial juxtaposition of two neurons in this
subtask are then interspersed with additional blocks of fivegchematic is irrelevant to network performance and is used solely
training trials on theAB subtask. Blocks of five trials on the for explanatory convenience. Only 210 of the 1024 neurons are
CA subtask are then introduced, intermixed with blocks ofshown.
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Testing Before Training Testing After Training
AB BC CA AB BC CA

FIG. 4. Training is necessary
for strong, reliable correct deci-
sion patterns. lllustrated here are
firing patterns for test trials given
before and after training. The first
three firing diagrams are of test
trials before training, to stimulus
pairs AB, BC, and CA, respec-
tively. Note that the firing patterns
of decision neurongindicated by
a, b, andc) are seemingly more
random prior to training. How-
ever, after training, externally de-
fined decision firing patterna, b,
or c are clearly produced by the
network when tested oAB, BC,
or CA, respectively.

Neurons 1-210 (neurons 211-1024 not shown)

‘Time

five training trials on theAB and BC subtasks. In the last active throughout. We decode the network’s decision based
phase of training, trials of all three subtasks are fully inter-on the recurrently induced firing of the external neurons that
mixed. Each simulation of TP consisted of 300 training trials.define the two possible decision patterns for each particular
The proportion of training trials consisting of a stimulus stimulus pair. For example, Fig. 4 illustrates testing before
pair (e.g.,AB) and the correct decision pattern with its ac- and after training for each of the three subtasks. Before train-
companying positive outcome pattefire., a, + in this ex-  ing, the simulations produce highly variable firing patterns of
ample as opposed to the incorrect decision pattern and théhe decision neurons. After training, however, there is a clear,
negative outcome pattern, varied as training progressed. Spstrong, and relatively stable firing of neurons that represent
cifically, the proportion of correct responses increased ovethe correct decision, and this is true for each subtask.
training exactly at the rate reported by Alvarado and Rudy To quantify this decision, we determine the average num-
[6]. ber of neurons in each decision pattern that fired during the
Following each learning trial, we assessed learning usingast three time steps of the test trial. If more neurons belong-
the method of induced attractofsee Ref[31]). Each test ing to the correct externally defined decision pattésry.,
trial was nine time steps long, plus the starting sta8), the decision &” when AB is the stimulus pajrfired than
with a stimulus pair presented on time steps one, two, andeurons belonging to the incorrect decision pattern, then the
three, and ten neurons from the positive outcome patternetwork made the correct decision on the subtask tested, and
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the test trial is scored as a 1. If more neurons belonging to Neurons 1-210 Neurons 211-420

the incorrect decision patterfe.g., “b” when AB is the Early Trial Late Trial Early Trial Late Trial

stimulus paiy fired than in the correct decision pattern, then -

an incorrect decision has been made, and the trial is scored aA{

a 0. If an equal number of neurons belonging to both deci-

sion patterns fired, the trial is scored as 0.5. Typical success

ful test trials, characterized by higher activity of the neurons

representing the correct decision pattern, are shown for all {
o]

three subtasks in Fig. 4.

Success in test trialsvhich are interleaved with the final
30 training trial$ is used to quantify learned performance.
As defined by Alvarado and Rud¥], a simulation learned a
TP only if it generated the correct decision at least 85% of
the time on all three subtasks during these final 30 test trials
(using alternative definitions we have determined that this
threshold criterion does not introduce artificial trends into the .
results.

D. Local context neurons

We previously[1] described the formation of transiently
self-exciting assemblies of neurosee also Ref8], Fig. 11
and 12. Such assemblies are characterized by neurons tha
fire repetitively in response to a specific set of temporally
contiguous patterns in a sequence. A repetitively firing neu-
ron is called alocal context neurorbecause it locates, in  +
time, a subsequence that provides contextual information.
For example, if a neuron fires only on time steps 3, 4, and 5
of a given sequence, it is a local context neuron of length 3
for that sequence. A neuron that fires on multiple, noncon- _
tiguous time steps is not a local context neuron, but such
neurons are extremely rare at the end of training.

Figure 5, particularly the recurrently activated neurons on
the right half of the figure, illustrates the local context neu-
rons formed during a TP simulation. Early in training, neu-
rons 211-420, which are not directly activated by external FIG. 5. Coqtex@ neurons develop with training. Notice the fre-
inputs, fire only in a sparse, scattered manner. In contrasfiuent sequential firing of the recurrent neurd@$1-420 occur-
after training, if one of these neurons fires, it tends to fire fori"9 late in training compared to early in training. This repetitive
several contiguous time steps. The formation of local conte>{t'],r"79 stands in contrast 1o the sparse, somewhat random firing ex-
neurons s mporant o @ simulaton (o succeed {78, U1 1 2% Senng, T o e ey iow o

To examine how randomnessZr(O) affgcts formation OT recurrently driven to fire. The example here is forAba+ train-
local context neurons during TP simulations, we determmeql

| | text | th f h simulati d ng sequence. The extern@le., inpu) codes are: stimulud, neu-
average local context length for each simuiation and aver, . 1-16; stimulus, neurons 17-32; decision pattern a, neurons

aged_ those values over all 30 simulations for each degree 9 —80; outcome for the correct response—neurons 145-176. Be-

fractional randomness tested. cause the network is randomly connected, the spatial juxtaposition
of two neurons in this schematic is irrelevant to network perfor-

E. Varying randomness in Z(0) mance and is used solely for explanatory convenience. Only 420 of

The initial state vectorz(0), specifies the binary firing "€ 1024 neurons are shown.
statesZ; {0,1} of each neuron at time step zero of each
training and test sequence. In contrast to Wu and U&ly has a fixed, specified fractional randomness, and from trial to
where the positively valued neurons were fully randomizedrial, eachZ(0) consists of a fixed, nonrandom positively
and their Hamming length systematically varied, h&(@) valued subspace of thgd,}N state space accompanied by
is constrained to a fixed length that corresponds to the optireurons that are varied randomly over the remaining state
mal length implied by the earlier study. Moreover, only aspace from trial to trialexcept when fractional randomness
fraction of this length(from 0 to 100% is randomized in a is zerQ. To create aZ(0) with a particular fractional ran-
set of simulations. The number of randomly firing neuronsdomness, we construct two preliminary subvectors. The first
divided by the total number of firing neurons defines thesubvector represents the group of neurons thastfire as
fractional randomness of 4(0). That is, for one full simu- part of allZ(0) vectors on all training and test sequences in
lation of TP training and testing, the binary state ve@(®) the simulation. Neurons coding input patterns are excluded

Time
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from this first subvector. The second subvector consists of
the neurons thatayfire in all Z(0) vectors. For each trial,
neuronal firing in the second subvector is uniformly random
given the required number that must fire.

This method of constructing(0) according to fractional
randomness provides an approximate control of trial-to-trial
Z(0) variation. The average normalized Hamming distance
between successivé(0)’s during training is a function of
the fractional randomness used 4r{0) construction. This
function and its derivation can be found in Appendix B.

To map the relationship between TP performance and
fractional randomness used in training, thirty TP simulations 6t 2 3 4 5 6 7 8 9
are averaged for each of 100 different levels of fractional Time step
randomness ranging from 0O to 1.

Normalized Hamming
distance

FIG. 6. Before training, external inputs limit recurrent firing to
an asymptotic level of randomness although how a simulation
reaches this level depends on the amourg @) randomization. As
must be the case, 0% perturbation, whéf@) andZ’(0) are iden-

To quantify the model's sensitivity t@(0) randomiza- tical, produces no difference in future network state, because net-
tions, the distance in state space between the temporallyork computations are deterministic. However, just perturbing a
matched firing states for a pair of simulations is measuregingle neuron at time step zero is enough to produce asymptotic
using Hamming distance. To generalize across simulationg@ndomness in just a few cycles. For each curve, a single network
using different activity levels, we normalize Hamming dis- (With no synaptic modificationwas presented twice with the same
tance by activity. Thus, whem, is Hamming distanced,,, input sequence; each presentation started with a dlf_ferent initial
is normalized Hamming distanc&(t) andZ'(t) are firing state[Z(0) or Z'(0)] but was then followed by the identical exter-

vectors from a paired simulation, ama{t) is the number of nal sequence on successive time steps. For each curve, the size of
neurons that are active on time ’stlep theZ(0) vs Z(0)' randomization corresponds to the point plotted at

time zero. Each curve plots the normalized Hamming distance be-

F. Measuring the effects of Z0) randomness on firing
patterns

dulZ(1),Z'(1)] tween the two firing sequences over nine time steps. Simulations
d.u[Z(1),Z2'(1)]= 5 . were parametrized asN=1024, m,=32, =0, K,=0.02, Ky
m(t) =0.047 626 8K,=0.777933w=0.4,c=0.1. Key: 0% perturba-

tion (M), 1% perturbatior(A), 25% perturbatiof®), 50% pertur-

bation ((J), 75% perturbationfA), 100% perturbatiortV).
G. Dynamic modulation of inhibition

We ran simulations with and without dynamic modulation also, Refs[5,24)), initial state randomization helps learning.

of inhibition [25]. When modulated inhibition is used, the _ _

values ofKg, K,, andK, are adjusted from trial to trial to B. Randomness does not disrupt learning

maintain, in an approximate sense, a desired activity level. Before training, arbitrary external inputs strongly influ-
Simulations run without dynamic modulation of inhibition ence recurrent firing. This is demonstrated in Fig. 6. That is,
can exhibit significant fluctuations in activity from trial to external inputs influence the path that the firing sequence of
trial. Even so, all results described below are robust withouthe network can follow through th®, 1N state space. When

regard to modulated inhibition. a single network is twice presented with a simple sequence,
the normalized Hamming distance between the two se-
[ll. SIMULATION RESULTS quences reaches an asymptote at approximately 0.6, regard-

less of the difference iZ(0)’s. Thus,Z(0) effects partially
dissipate over the course of a single trial. But as a test trial
includes fewer time steps of strong external activation, we
Simulations show a positive role f@(0) randomness in still need to determine why larg&(0) randomization does
learning TP. The amount of trial-to-trial variability @(0)  not disrupt testing.
(fractional randomnegss monotonically related to perfor-  As it turns out, there is less and less sensitivity to varia-
mance, and the best performance is achieved vid{@) is  tion of Z(0) as training progresses. In psychological terms,
fully randomized(fractional randomnessl) for each trial  the learned responses to the input sequence become increas-
(Fig. 1). ingly reliable as training progresses. This reduced sensitivity
Another baseline control is the use of no active neurons ino initial firing state variation is most simply demonstrated
Z(0) as opposed to the fixed, nonfluctuating neurons(6) by repeatedly training on one input sequence. Consider a
with fractional randomness of zero, as illustrated in Fig. 1.simulation consisting of training on the same nine time step
When Z(0) randomness is zero, only 57.5&3/40 of the  sequence for 125 trials. After each training trial, the simula-
simulations are successful compared to 81.8886/780, tion is tested twice on the training sequence using two or-
standard deviation7.1%) of simulations with full (75—  thogonalZ(0)s. Thenine firing states of each pair of test
100% randomization. Thus, regardless of the conti@se trials were compared, matching time step for time step, and

A. Randomness in initial firing patterns assists performance in
cognitive tasks
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Introduction of .
:e,r:sl;;:::,ze FIG. 8. Randomness a(0) leads to the formation of longer

local-context units. Note that the curve shown here is qualitatively
\ similar to the curve in Fig. 1: specifically once fractional random-
ness ofZ(0) is greater than 50%, mean context length increases
dramatically and an asymptote is reached at about 77% randomness.
Plotted here is the mean of the context neuron distribution after all
300 training trials, averaged over all 30 simulations used in TP.
Because data from each training sequence produced quantitatively
similar results, we only show context lengths for the one training

Average Normalized
Hamming distance
o
[é,]
]

0.0 T T T T | sequence, AB)(AB)(AB)(a)(a)(a)(+)(+)(+). The simulation
0 25 50 75 100 125 parameters were the same as for Fig(See Sec. Il E for the defi-
(b) Training trial nition of local-context neuronk.

FIG. 7. (a) Sensitivity toZ(0) randomization declines rapidly as
training progresses, but it remains nonzero even after 125 trials. In
only 15 training trials, perturbation of firing sequences dué (@
randomization arrives at its approximate minimal val(®. Intro- L .
ducing a new input sequence during training temporarily increases Although _Sens't'v'ty _toZ(O) randoml_zatlon d_ecreases
sensitivity to random perturbation of the initial firing state. The new@Cr0Ss training on a single sequence, introducing a novel
sequence is fully orthogonal to the first sequence introduced ofXte€rnal input sequence during training transiently reverses
training trial 39. Both parts use the same general methods. Two te$is trend. Figure () illustrates the early, quick, decrease in
trials accompany each training trial. Normalized Hamming dis-Sensitivity toZ(0) randomization, but more importantly, it
tances quantify each time step of these two tests. Plotted here aidustrates a reversal of this decrease triggered by the intro-
the average of the nine Hamming distances for each pair of tegiuction of a novel sequence. When the new sequence is first
trials. The training sequence was nine time steps long, and the set aitroduced at trial 40, the average normalized Hamming dis-
firing externals shifted by eight neurons on each time step. A diftance between state vectors immediately jumps from 0.13 to
ferent Z(0) was used for each presentation such that0.56. But just as before, this increased distance drops off
dnu[Z(0),2'(0)]=1. Simulation parameters:N=1024, Ko,  quickly (~15 training trial, reaching roughly the same as-
=0.510365,Kg=0.048 109,K,=0.02, m,=16, all other param- ymptotically low level of sensitivity as when trained on the
eters are the same as in Fig. 1. initial sequence. Apparently, the novel input sequence pushes

the network into a new region of state space, forcing it to use
neurons whose synapses have not yet been modified.

C. A novel training sequence increases sensitivity
to Z(0) randomization

averaged. The average normalized Hamming distance was
0.86 before training, and dropped to 0.19 by training trial
number 15; Fig. @) details the comparison for all training

trials. Note the larg&(0) randomness effect occurring atthe  Greater average local context length has been correlated
beginning of training gives way to a smaller effect as trainingyith petter performancgl,22]. Here we can study this cor-
progresses, and it does so rather quickly. As a result of thigs|ation in a much more direct fashion. By varyi@g0) as
growing insensitivity toZ(0), randomization is no longer in Fig. 1, we vary average context length as well as perfor-
disruptive after sufficient training. However, this observationmance. In fact, the two measures vary in the same highly
must be further considered in light of the progressive traininghonlinear way as a function of randomization. Comparing
paradigm, which successively introduces new sequences dufig. 1 and Fig. 8, we see a striking similarity to the relation-
ing training. ship between randomness and performance on the transverse

D. Z(0) Randomization affects formation of
local context neurons
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patterning problem. Both context length and success rate un- 200+
dergo a dramatic jump between fractional randomness 0.5 Functional
and 0.75, and level off after fractional randomness 0.75. £ threshold
Thus, there is a strong linear correlation when the two de- g 1504
pendent variables are regressed against each other. The linear 2 ;
regression of average context length vs TP performance ‘6 4gq. o
gives r2=0.95 with a slope of 1.214 ang intercept § :
= — 1.919. g

z 504

IV. MODEL DYNAMICS IN RANDOM SEARCH
At the heart of our hippocampal theory is sequence learn- 0y T T

ing as recoding8]. It is natural to use terms such as recoding
or encoding because after training, there is a reliable map-
ping fr'om a particular set of actl\{e external input neurons FO FIG. 9. Before training the excitation distribution is approxi-
a particular set of recurrently activated neurons. Not surpris- . ! :

. . . “mately normal with the functional threshold appropriate for the ac-
ingly, the codes are highly dependent on the external inp

d duri . Ref[22]). Und utﬁvity level. Neurons to the right of the functional threshold will fire,
sequences presented during trainisge Ref[22]). Under- those to the left will not. Only neurons that will be incorporated into

standing how a simulation learns good codes requires age network's firing at the end of training contribute to the excita-

analysis of how the simulation moves through state spacgon gistribution. This distribution was measured from time step 10

during training. Here we begin the development of a quantisf 4 simple sequence 20 time stépatterng long. The shape of the

tative prediction of howZ(0) affects the state space path of gistribution remained unchanged regardless of the time step gener-

an untrained network. ating the data. The simulation parameters were the same as those
In Sec. IV A, we discuss effects @f(0) randomization on used for Fig. 1.

the excitation of neurons relative to threshold. Based upon

the ideas outlined in Sec. IV A, Sec. IV B details a quantlta—.l_he idea relevant t&(0) is that any small change could

::\éﬁ tgferc;rz dcgr;?zn;tic:)mnlfr?ztl(%r; og;t}he ;I;?ttstlthZ S;theg fosni;gtnsc'push the excitations near the firing threshold to the other side

of excitation distribution and functional threshold of the threshold. That Is, changing the set .Of neurons that fire
' on the previous time step leads to large differences in which
o o neurons actually fire on the next time step, although the
A. Neuronal excitation before training shape of the excitation distribution remains unchanged.
Although the excitation received by each individual neu-Thus, we hypothesize that those neurons near functional
ron changes radically across a single trial, the shape of théareshold hold the key to understandifg0) effects.
excitation distribution remains relatively unchanged from As a simulation is trained on specific sequences, synaptic
time step to time step within a trial. The excitation distribu- weights modify in response to those sequer(seg, for ex-
tion and the position of the functional threshold offers im-ample, Ref[33]). As a result, excitation distributions after
portant insights into the parametric sensitivities of the modetraining differ markedly from excitation distributions before
[24,32. On each time step of a simulation, feedback andraining, particularly near the functional threshold. After
feedforward inhibition change the amount of recurrent exci-training, fewer neurons are in the vicinity of the functional
tation needed to fire a neuron. This fluctuating minimumthreshold than before traininggompare Fig. 10 to Fig.)9
amount of excitation to fire a neuron is thenctional thresh-  This tendency for neural excitations to move away from the
old. Rewriting Eq. (1), the following formula determines functional threshold makes it more difficult f@(0) based
functional threshold when all synaptic weights are equal tdandomizations to affect firing after time step one. Thus, the
W histograms of excitation explain why initial sensitivity drops
as training progresses, and they explain viZ{() random-
ness does not harm test performance.

Excitatory input (Z ziwy)

1
S= W[KRm(t_1)+K|me+ Ko] .

Using an untrained simulation presented with a simple B. Predicting sensitivity to initial conditions before training

twenty-pattern sequence, Fig. 9 locates the functional thresh- In line with the suggestion tha(0) randomness perturbs
old relative to the excitation distribution where an excitationthe neurons that have near-threshold internal excitations, we
is the numerator of Eq.l) for each neuron. Note the large develop a mathematical expression that describes the effect
number of neurons whose excitations are very close to thef Z(0) randomness on neurons as a function of their exci-
functional threshold. This indicates that many neurons in anation relative to functional threshold. This theoretical ap-
untrained network receive either just enough excitation tgroach confirms the validity of the shuffling around thresh-
fire, or receive just under the excitation needed to fire. Wenld concept as described above, and it makes this hypothesis
claim that these near-threshold neurons are more sensitive &xact. Specifically, we consider a random process that
changes in the network firing state on the previous time stephuffles histogram occupancies to the left and to the right of
than neurons with excitations far from functional threshold.the threshold and calculate the general expression that esti-
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. o o ) FIG. 11. The theorem based prediction of sensitivity to initial
FIG. 10. Training alters the excitation distribution including the giate randomness closely follows empirical observations. Plotted
num_ber of neurons in the vicinity of functional thr_eshold. After nere are pairs of points. One poifiY is the expected sensitivity to
training, fewer neurons are located near the functional thresholgitia) state randomness produced by the theofsee Appendix A
than before trainingcf. Fig. 9. Combined with the finding that  the other point(®) of each pair is itself derived from pairs of
training reduces sensitivity t@(0) perturbations, this change in - gimyations. This plotted data point is the average of 70 such pairs
excitation distribution around threshold supports the ideaZlit  of simulations. Each set of 70 paired simulations is parametrized
sensitivity is greatest when many neurons have excitation levelg;i injtial state vectors that differ according to the normalized
near the .functl(.)nal threshold. The excitation data comes from #amming distance indicated by theaxis. As can be deduced by
training simulation on the AB)(AB)(AB)(a)(a)(a)(+)(+)(+)  Eq. (B1) in Appendix B, there is an explicit relationship between
sequencésee Methodsafter all training is completed. Excitations ¢ 4ctional randomnes@lefined in Sec. Il D and expected normal-
were recorded from the simulation’s response to time st€ppé ¢4 Hamming distance:=E(1—a)/(1—a—Ea), wherer repre-
proximately the middle of the externally driven sequence of iNputs gants fractional randomness, a represents activity,Eargpresents
Only neurons that were incorporated into the network’s firing at theexpected normalized Hamming distance. As described in Sec. Il F,
end of training _contribu_te tq the excitation distribution. SimUIationssensitivity of initial conditions is quantified in terms of normalized
were parametrized as in Fig. 1. Hamming distance, which measures the distance in state space be-
tween temporally matched firing states for a pair of simulations.
mates the effect of this shuffling. The calculation predictsgach data point plots normalized Hamming distance, measured on
E{d,+[Z(1),2"(1)} givendy[Z(0),Z'(0)]. time step 1, each pair having a unique randomly generated connec-
The shuffling process is quantified as a two-step processvity. The simulations were parametrized a$=8000, w=0.4,
using two functionsk andR. The functionL maps an initial a;=2.5, m,=20, 6=0.5, Kg=0.0539525, K,=0.01, K,
stateZ(0) to a “loss” statez-(0) by deactivatingA active  =1.19525.
neurons inZ(0). Thefunction R mapsZ-(0) to a “reacti-
vated” initial stateZ’ (0) by activatingA inactive neurons in  network paths through state space. In Fig. 11, the predictions
Z'(0) with the restriction that none of thie newly activated  of this theory are compared with empirical observations ob-
neurons can be one of the neurons deactivated bl fhac-  tained from simulations. Based on this comparison, it seems

tion. we have a quantitatively acceptable theory of the model. Av-
Theory Specify the set of constantg={N,a,,c,S,mg} eraged over 70 different randomly connected networks of
(see Methods for definition of constant3hen, 8000 neurons running at approximately 1.25% activity, em-
pirical observation of sensitivity to initial conditions tightly
E{d,4[Z(1),2'(1)][B,du[Z(0),Z'(0)]=2A} follow the theorem’s predictiorithe theoretical calculation
(N—m,) deviates outside the standard error of the mean for only two
= NG € out of 15 point$. Such comparisons are robust across num-
Nag|(N—Nag N ber of neurons and activity level.
((N’“e)hEs ( h )( Nc—h ) (Nc) me)
V. DISCUSSION
SR
X & s -k Nc—(h+f—k)/{h—k Computational simulations here and elsewhigkdem-
onstrate that randomizing the initial state will enhance learn-
% NaO—A) ing by our hippocampal CA3 model. Simulations with large
k ' randomizations oZ(0) during training are more successful

during testing than simulations in which the initial state vec-
where S is the critical number of inputs needed to fire anytor is left constant.
neuron not fired externally on time step 1. These beneficial effects, which arise from initial state ran-
Appendix A derives this result and shows how a smalldomness during training, correlate with a greater range of
difference in the vectoZ(0) can quickly lead to divergent activity states visited by a simulation in the early training
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trials. This greater range of the simulation’s path throughstate before training quickly affect differences in the model’s
state space across training trials, referred to as “search,” iseuronal firing patterns. Figure 11 provides an empirical
itself correlated with more robust performance which, bydemonstration of the theorem’s accuracy. By providing a
definition, must arise from better encodings. Fortunately, agneans of quantifying the rate of search through state space as
synaptic weights and codewords mature with each trial oft function of initial conditions, the theorem comprises a criti-
training, a simulation grows less and less sensitive to th&€al first step in understanding how the model finds viable
effects of initial state randomization. As a result, the effectfifing patterns to recode input sequences.
that enhances search does not disrupt testing.

The observed beneficial effects of initial state randomiza-
tion in our model are analogous, in a certain sense, to the ACKNOWLEDGMENTS
more well-known effects of randomness in simulated anneal- This work was supported by NIH MH48161 to W.B L.,

ing [34] (anq see also Rgf§35,36| forapo§sible application MH57358 to N. Goddardwith Subcontract No. 163194-
corresponding to the biology of the hippocampu€on- 54351 1o W L), by the NDSEG Fellowship Program to

-r}\.P.S. and by the Department of Neurosurgery. We also

trolled randomization of movement through state space i
simulated annealing improves performance by forcing a SYSthank Dr. Nancy Desmond for her constructive criticisms of
earlier versions of the manuscript.

tem to explore regions of state space outside of a local opti;
mum. Moreover, and similar to observations of Fig. 6, the
effect of this randomization in simulated annealing, the dis-
tance covered by this exploration through state space lessens
over time. However, in simulated annealing, temperature is
typically decreased over time by an external control mecha-
nism and a special schedUl&7,38. In contrast, the lessen-  Preliminaries Consider a sparse, randomly connected re-
ing effect of randomness over time in this model is an emereurrent neural network described by E@$) and (2), with
gent property of the model itself, a property which was notfixed parametersl, m., w, a,, Kg, K, andK,. To measure
explicitly designed into the model. the sensitivity of firing sequences #(0) randomness, two
Based on the observations here, the time of and just aftefimulations are run with the same connectivity. One simula-
the introduction of a new sequence seems most vital becaus@n is initialized by state vectaZ (0) and the other simula-
it is then that the broad search of state space occurs. Intr@ion is initialized by state vecta’ (0). Each simulation pro-
ducing a novel training sequence of active external inputgjuces a set of firing patterns on the next time step. These are

forces the network to use previously unused neurons. DuringalledZ (1) andZ’(1), respectively. Here, by definition, the
the first few trials after the introduction of a new sequencepnumber of active neurons on time step ZeroNao, or

the weights of these newly active neurons have not yet staequivalently for these binary neurons,
bilized, and relatively many neurons have excitation levels

near the functional threshold, as in Fig. 8. It is during this

period of larger trial-to-trial variation of neuronal activation ap=P[Z;(0)=1]= p[zj’(o)zl].
that more random variations of the initial state create func-

tionally important fluctuations in the neurons near threshold.

The theorem of Sec. IV and Appendix A substantiates how Define a positive integes, such that,
critical the neurons just to either side of threshold are in this

process.

This hypothesized expanded search, leading to better sets du[Z(0),2'(0)]
of coactive neurons, which is to say good codes, is defined Azf,
further by the observation that randomization of the initial
state vector increases the average length of local context neu-

rons. [Average context length has a strong positive linear . . : ;
. . ) wher is Hamming distance. We will to represent
correlation with TP performance =0.95) ] That is, aver- eredy, is g distance. We usé to represe

. o the number of neurons perturbed fréhG0) to Z'(0).
age local context length is a way of quantifying good codes Indicate the probabili?y that a necuzrgrr)eceivésh) active

for solving TP. In particular, the existence of such a define nputs as
good code with larger average context lengths implies that a
simulation has associated temporally distant portions of the
training sequence. As a result of these longer-lasting local N
context neurons, there is a more stable cell-firing bridge to P( 2 c--z-=h>.
span temporally distant portions of the training sequence. ESTR
Thus, initial state randomness helps the network create pat-
terns of cell firing that lead to improved sequence prediction.

Our current hypotheses are supported, both gualitatively Further, defineS as the minimum number of active inputs
and quantitatively, through the idea of the sensitivity of theneeded to fire a neuron (1) or Z'(1).
model’s firing patterns to initial state randomness. The theo- Theorem Specify the set of constants, 8
rem given in Appendix A shows how differences in the initial ={N,a,,S,c,m.}. Then

APPENDIX A: QUANTITATIVE ANALYSIS OF
SENSITIVITY TO INITIAL CONDITIONS
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E{d,u[Z(1),Z'(1)]|B,A} vated by thel function. Thus,R[Z-(0)]=Z'(0). Since the
(N=my) total activities ofZ(0) and ofZ’(0) are equal, we can write
- 5 (Nap)[N—Nag| [ N e L < _
(N—me)hz,s( N )( Ne—h )+(Nc>me ,Zl z,-(o)—;1 zj(0)+A_JZ1 Z,(0)=Nay.
ST1S1 Ne oy N—Nag—A A Lemma 3 Recall the definition of the sg&. The probabil-
ngo kzo hgs (f—k)(Nc—(m—f—k))(h—k) ity that a neuron receivesk active inputs whem\ active

neurons are removed from(0) given that neuron origi-
nally receivedh active inputs fromz(0) is given by

Nl : )(hAk)(NaokA)

Nag—A

1k

Cijz!_:kliZj_ CijZi=h

Note that this theorem is derived from the product of three P(
Nag

hypergeometric distributions. To prove the theorem, we offer

four supporting lemmas. h
Lemma 1Let Sbe the critical number of inputs needed to
fire a neuron via recurrent inputs on time step 1. Ti8am Proof. The number of ways a neurgican receiveh active
given by inputs is
K0+KRm(t—1)+K|mﬂ (Nao
= W . h .

Of these, thek inputs left active inZ-(0) can be chosen,
without replacement, fronNa,— A neurons[since Z-(0)
containsA fewer active neurons than do&¢0)] giving

Proof. See Ref[24].
Lemma 2 Recall the definition of the s@. The probabil-
ity of a neuronj receiving h active inputs is given by the

hypergeometric distribution NaO—A)
Ryl k
N - . g,
p 2 c.z=h|= h Nc—h different possibilities.
=T A N ' But the loss oh—k active inputs can only come from the
Nc A active neurons removed fro@(0) to form Z-(0) giving
Proof. A sample of sizé\cis to be randomly chosen from ( A
N neurons of whiciNa, are active neurons ard-Na, are h—kJ’

inactive neurons. Leh be the number of neurons in the

sample picked that are active. The probability of chooging POsSibilities. _
active neurons out of a sample NE neurons is the hyper- These last two counts are independent, and thus are mul-
geometric given above. Q.E.D. tiplied together to get total number of ways$ can occur.

Perturbation oZ(0): To facilitate discussion of Lemmas Q.ED. o )
3 and 4, we define two functions, one callecand another _ Leémma 4 Recall the definition of the s The probabil-
called R These functions allow us to perform a stepwiselty that & neuror receivesf active inputs fromz’(0) given
analysis of the process through which we randomly perturihat neurorj receivech active inputs fronz(0) andk active

neurons to creat&’(0) from Z(0). inputs fromZ"(0) is given by

The functionL maps an initial state vectaz(0) to a N N N
“loss” state vectorz-(0) by randomly deactivating active o oL o
neurons inZ(0) (i.e., resetting their binary firing states from P 21 CijZi f|§1 CijZi k’zl cjZi=h

1to 0. We denotd_[Z(0)] aszZ-(0). Z-(0) is a state vector \ \
identical toZ(0), except thatA active neurons iZ(0) have _ , _
been deactivated. Thus, =P ;1 CijZi _21 cijZi=f—K

N N N N
> ZH0)=2, Z;(0)-A. > ¢Zi=k 2 ¢;Zi=h
=1 =1 i=1 i=1
The functionR mapsZ-(0) to a “reactivated” initial state ( A )( N—Na,—A )
vectorZ'(0) by randomly activating\ inactive neurons in _ f—k/\Nc—(h+f—k)
Z(0), with the restriction that none of thA newly acti- (N—Nao
vated neurons can be one of the neurons previously deacti- Nc—h
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Proof. The proof is analogous to that for Lemma 3 exceptn,;=n,. But by the standard Hamming distance definition,
here we must take into account thé, neurons izt can-  dy[Z(1),Z'(1)]=n;+n,, which gives us a normalized
not be perturbed by the functioR, and thath of the Nc  value of
inputs cannot be part of the inputs selected by this function.

Q.E.D. dn[ Z(1),2/ (1)]=(ny+Nny)/2(n; + 1)

Proof of the theoremFor any given{Z(1),Z'(1)} pair, [ 2(1), 21 (D)1= (natnz v
let us enumerate across all neurons, the effect of the pertur- =2n4/2(ny+n3)=n;/(n;+ngy),
bationA,

which is just the empirical conditional probabili§{Z; (1)
. , =0|Z;(1)=1]. That is,
n=[{j:2(1)=12/(1)=0}, 1Z(1)=1]

. , doul2(1),2'(1)]=P[Z{(1)=0[Zj(1)=1]. (A1)
n={j:Z;(1)=02/(1)=1}/, " : :
The problem is thus reduced to determining the conditional
i 7 (1 =1 7/ (1) = probability in Eq.(A1). Denote the set of all neurons that are
ne={i:2(1)=1Z{(1)=1}, fired externally asvl, whereM has cardinalitym,,

ns=Nj:Z;(1)=0Zj(1)=0}. P[Z{(1)=0|Z;(1)=1]=P[j e M,Z/(1)=0|Z;(1)=1]
These are all the possibilities partitioned, thustn,+n; +P[j¢M,Z/(1)=0|Z;(1)=1].
+n,=N. Because the number of active neuronZ (1) and ) '
Z'(1) are by assumption equal; +nz=n,+n3, and thus, Externally fired neurons cannot be turned off, thus

=P[j£M,Z{(1)=0|Z;(1)=1]=P[Z](1)=0[Z;(1)=1j ¢ M]P[] £M|Z;(1)=1]
={P[Z}(1)=0Z{(1)=0|Z;(1)=1,j éM]+P[Z;(1)=1Z{(1)=0|Z;(1)=1,j £ M]}.

P[jeéM|Z-(1)=1]={P[Zj’(1)=O,ZjL(1)=O|Zj(1)=1,jéM]+0}P[jéM|Zj(1)=1]
N N
=P 2 Cij ,(1><SE Cij Z; ( ><S|2 c.,2(1>>s)P[JeéM|Z(1> 1]

S—-165-1

N
=PlieMIZi(V=1]2 > P(El 6iZj(1)= fZ G Zj(1)= k|2 c..z,<1>>s)

N
S-15-1 P(i21 Cij J<1>—f2 ciZ(1)= kE cijZ;(1 S)
=P[jéM|Zj(1)=1]ZO kgo

_P[jéM|Z(1)—1]S 1S-1 Nc (N )

> 2 P 2‘, ciiZ{(1)=f, Z ciiZ[(1)= kZ cijZj(1)=h

- P[Z(1)=1]jéM] =0 Eo i

(JéM) S—1 S—-1 Nc
= Bz (D=11 2% 2 s

f=0 k=0 h=S

N
2 CiiZ] ( =f,i§1 GZp(1)= kE cijZj(1)= h) (A2)

By the definition of conditional probability, one has

(Zc., Z/(1)= ch., ZH(1)= kEc.,zm h)

N

N N N N N
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The three probabilities in the above equation are given by Na,—q—g
Lemmas 2, 3, and 4, respectively. So, substituting into Eq. dnu[2(0),2'(0)]= —5
(A2), replacing these probabilities with their respective hy- R
pergeometrics, simplifying, and taking the expected valu

; . . Sve are interested in the average normalized Hamming dis-
over multiple simulations, we have,

tance, as a function af. To find this, note the probability
thatg neurons are randomly selected to fire in bati®) and

E{dn1[2(1),2"(1)]} Z'(0),
- (e N N—N
B Ne H—q —Nag
Nag| [ N—Nag N (
((N_me)hEs( h )( NC_h>+me<NC)) P(g=x)= X l\El_\l:O_q_X
Neo-a

S—1S-1 Nc A N—NaO—A A
x2 22> ek Nc—(h+f—k) /| h—k
f=0 k=0 h=S .. . I . . .
This is a hypergeometric distribution, with expectation

Nag—A
1k ) (Nag—q)?
Elg]= “IN—q)
by construction of those probabilities and the definitiorSof
given by Lemma 1. Q.E.D. Thus, the expected normalized Hamming distance is
APPENDIX B: RELATING NORMALIZED HAMMING (Nao—q)2
DISTANCE TO FRACTIONAL RANDOMNESS Nay—a-— (N—0)
. : E{dnn[Z(0),2'(0)]}=
In order to vary randomness in a systematic and compu- Nag

tationally efficient way, the TP simulations used fractional _ o _
randomnesgsee Methods defined as the independent vari- Recalling the definition of fractional randomness,
able r. Despite this, the theory described in Appendix A

quantifiesZ(0) randomness in terms of normalized Ham- Nag—q
ming distance. Fortunately, there is a strong relationship be- r= Nag '
tween fractional randomness and the Hamming distance be-

tweenZ(0)’s used in different trials. which implies

The relationship between fractional randomnessand
normalized Hamming distance comes from the definitions of
fractional randomness and normalized Hamming distance
themselvegsee Sec. Il E and II)F Of particular importance
is the procedure that uses fractional randomness to random
vary Z(0) from trial to trial in a controlled manner. We will
find that the method of fractional randomness provides

g=Nag—Nagr.

ow, substituting forq produces an expression that deter-
ines expected normalized Hamming distance in terms of
éalctivity and fractional randomness

good approximate control over trial-to-trid(0) normalized ,
Hamming distance. E{dnu[2(0),2°(0)}
Recall that to creat&(0) with fractional randomness (Nagr)?
one set of active neurons is fixed from trial to trial, and the Nagr — (N+Nagr —Nag)
rest of the active neurons are chosen randomly from the re- =
maining neurons iZ(0). Defineg as a random variable that Nag
represents the number of active neurons that could have been agr? r(1—ag)
randomly perturbed, but were not, and defiqnas the num- =r (B1)

ber of active neurons held fixedhat is, could not be per- (1=ag+apr) (1-ap+aor)

turbed. Thus, the total number of active neurofrepre-
sented byNay) is the sum of those that were perturbalf
the Hamming distangeplus those that could have been per-
turbed but were notg), plus the ones held fixed),

This difference between average normalized Hamming
distance and fractional randomness increases as fractional
randomness or activity increases, but not by much. In par-
ticular, when fractional randomness is zero, expected nor-
malized Hamming distance is zero, whereas, at fractional

~dy[Z(0),2'(0)] randomness of one, expected normalized Hamming distance
N 2 +tg+a. is 1—ay. For example, when fractional randomneds and
a0=0.1 (as in our TP simulationsthe average normalized
Rearranging this equation in terms of normalized HammingHamming distance between any t&¢0)’s used in training
distance, is 0.9.
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